B-07

Altering concentration of omega-6 and omega-3 by improving fatty acid bio-synthesis system in soybean

Jeong-Dong Lee*, Kyungpook National University, North Gyeongsang, Republic of Korea

Minsu Kim, School of Applied Biosciences, Kyungpook National University, North Gyeongsang, Republic of Korea

Krishnanand P. Kulkarni, School of Applied Biosciences, Kyungpook National University, North Gyeongsang, Republic of Korea

Kristin Bilyeu, USDA-ARS, Missouri, USA

Jong Tae Song, School of Applied Biosciences, Kyungpook National University, North Gyeongsang, Republic of Korea

J. Grover Shannon, Division of Plant Sciences, University of Missouri-Columbia, USA Soybean seed has about 20% oil content at maturity with the oil being the world's most widely used vegetable oil. Soybeans contain five predominant fatty acids, 12% palmitic acid, 4% stearic acid, 23% oleic acid (ω -9), 54% linoleic acid (ω -6, LA) and 8% α - acid (ω-3, ALA). Linolenic acid or ω-3 was reported to have anticancer and anti-inflammatory effects and a role in preventing cardiovascular diseases. In contrast, oils high in ω-6 were reported to have negative effects on health in humans. Studies have shown that minimizing the ω -6/ ω -3 ratio in edible oils could have human health benefits. Therefore, reducing the ω -6/ ω -3 ratio of soybean fatty acids has become a goal in breeding programs. Normal soybeans have a ω -6/ ω -3 ratio of 6 to 7. Wild soybeans contain ~15% ω -3 in seed oil whereas cultivated soybeans have ~8%. Therefore, progeny having different ω -6/ ω -3 ratios can be derived from interspecific crosses between a wild and cultivated soybeans. A cross between S08-14717 with high oleic genes FAD2-1A and FAD2-1B having ~80% oleic acid and ~5% ω-6 and ω-3 each was made with wild soybean, PI 483463, with ~14% oleic acid and 55% ω -6 and 15% ω -3. There was large variation in fatty acid composition in F_{2:3}seed oil from each of 1500 F₂ plants from the population. Lines having FAD2-1A or FAD2-1B mutations had 33.5 – 47.1 % oleic acid, $26.5 - 37.8 \% \omega$ -6, and $13.9 - 15.7 \% \omega$ -3. Therefore, several lines were identified with ω -6/ ω -3 ratios as low as 2-3:1. Lines with low ω -6/ ω -3 ratios have been advanced to the F_5 generation with the ω-6/ω-3 ratios stable in every generation. The ratio between ω-6 and ω -3 is reduced by using FAD2-1A or B mutations to increase oleic acid and reduce ω -6 while increasing the ω -3 from wild soybean. This system will be useful to improve fatty acid composition in soybean.