B-203

Genetic mapping and validation of the 7S a' and 11S A-type storage protein subunits in soybean [*Glycine max* (L.) Merr.]

*Jeffrey Boehm Jr.**, Department of Crop and Soil Sciences, University of Georgia, Georgia, USA

Vi Nguyen, London Research and Development Centre, Agriculture and Agri-Food Canada, Ontario, Canada

Rebecca Tashiro, Department of Crop and Soil Sciences, University of Georgia, Georgia, USA

Dale Anderson, Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Ontario, Canada

Chun Shi, Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Ontario, Canada

Xiaoguang Wu, Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Ontario, Canada

Lorna Woodrow, Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Ontario, Canada

Kangfu Yu, Harrow Research and Development Centre, Agriculture and Agri-Food Canada, Ontario, Canada

Yuhai Cui, London Research and Development Centre, Agriculture and Agri-Food Canada, Ontario, Canada

Zenglu Li, Department of Crop and Soil Sciences, University of Georgia, Georgia, USA The storage protein globulins β -conglycinin (7S subunit) and glycinin (11S subunits) can affect the quantity and quality of proteins found in soybean seeds and account for more than 70% of total soybean protein. Manipulating the storage protein subunits to enhance soymeal nutrition and for desirable tofu manufacturing characteristics are two end-use quality goals in soybean breeding programs. To aid in developing soybean varieties with desired seed composition, an F₂ mapping population (n = 448) and an F₅ RIL population (n = 180) were created by crossing high protein cultivar 'Harovinton' with the breeding line SQ97-0263 3-1a, which lacks the 7S α ', 11S A₁, 11S A₂, 11S A₃ and 11S A₄ subunits. Storage protein composition of each individual in the F₂ and F₅ populations were profiled using SDS-PAGE. Based on the presence/absence of the subunits, genomic DNA bulks were formed among the F₂ plants to identify genomic regions controlling the 7S α ' and 11S protein subunits. By utilizing polymorphic SNPs between the bulks characterized with Illumina SoySNP50K iSelect BeadChips at targeted genomic regions, KASP assays were designed and used to map QTLs causing the loss of the subunits. Soybean storage protein QTLs were identified on Chromosome 3 (11S A_1), Chromosome 10 (7S α ' and 11S A_4), and Chromosome 13 (11S A_3), which were validated in the F₅ RIL population. The results of this research could allow for the deployment of marker-assisted selection for desired storage protein subunits by screening breeding populations using the SNPs linked with the subunits of interest.