Breeding high oleic non-GMO soybeans

J. Grover Shannon – MU Soybean Breeding Kristin D. Bilyeu- USDA Research Molecular Biologist Anh Pham- PHD student Jeong Lee- Kyungpook Nat'l University, Daegu, S. Korea

Many collaborators- USB funded oil project

Soybean Composition

38% Protein

15% Soluble Carbohydrates, (Sucrose, Stachyose, Raffinose, others)

15% Insoluble Carbohydrates (Dietary fiber)

18% Oil (.05% Lecithin)

14% moisture ash/other

Soybeans Are Not Perfect

Limited in food, feed and industrial uses because of:

- 1. Beany flavor
- 2. Indigestible carbohydrates
- 3. Anti-nutritional factors
- 4. Low oxidative stability of oil
- 5. Deficiency of AAs cystiene & methionine

UNITED SOYBEAN BOARD BETTER BEAN INITIATIVE

DEVELOP SOYBEANS WITH BETTER OIL AND MEAL TRAITS TO INCREASE DEMAND FOR U.S. SOYBEANS

OLEIC ACID- One of 5 Fatty Acids in Soy Oil

Palmitic acid (16:0) Stearic Acid (18:0) Oleic Acid (18:1) Linoleic Acid (18:2) Linolenic Acid (18:3)

Most Desired Soybean Oil Phenotype Saturates (16:0 +18:0) 15% to < 7% Oleic acid (18:1) 24% to > 55% Linolenic acid (18:3) 8% to < 3%

Soybean oil and the *trans* fat rap Mac and cheese

 Hydrogenation increases oil stability but creates trans fat which is heart unhealthy

Soy-oil with >55% Oleic Acid will

- Increase heat stability, taste & shelf-life
- Have more food applications
- Reduce hydrogenation & trans-fats
- Improve soy-diesel, lubricants
- •
- More use in pharmaceuticals & cosmetics

Non-GMO sources for developing high oleic acid

 N98-4445A: 60% oleic six genes- low yield and unstable across growing environments –

M23: 40-50% oleic – Patented

- Single recessive gene
- lower yield, somewhat stable

Six QTLs confirmed for Oleic acid in N98-4445

N00-3350 derived from N98 used in mapping genes

	R ²	Marker
A1	4%	Satt211
D2	6%	Satt389
G	13%	Satt394
G	7%	Satt191
L	9%	Satt418
L	25%	Satt561

(Monteros & Boerma, Crop Sci (2009)

Once we had the markers-breeder collaborators began using marker assisted backcrossing to introduce the six high oleic genes into adapted lines Nguyen lab- MO- S. Dak. Minn., & N. MO

Boerma lab- GA- S. MO, AR, TN, NC, GA

Puerto Rico for year round back crossing

Influence of Temperatures at Seed Fill on Desired Fatty Acid Composition

Palmitic acid Stearic acid High Oleic Acid Low Linolenic acid Best <u>Temperature</u> Little Effect Little Effect Warmer Warmer

Effect of Environment on Oleic Acid Content of N98-4445

	<u>% Oleic</u>
Mississippi- very warm	70
Southern Missouri- warm	60
Central Missouri- cooler	45
Central Iowa- much cooler	35

Unless stable oleic acid genes can be found without the influence of temperature, mid oleic acid strains will need to be:

Produced in warmer regions
Early in maturity
Planted at earlier dates to have pod fill stage when temperatures are warmest

The suspects: FAD2-1A and FAD2-1B

Plant introductions with elevated Oleic acid Most soybeans have about 23% oleic acid About 50 plant introductions have higher oleic acid content, 30-45%

Useful and fewer genes for improving oleic content and less variation in 18:1 over locations

Higher Oleic Plant Introductions

- Could have a simple gene for high oleic acid
- Could be more stable across growing conditions
- Genes from PIs with 35 to 40% oleic acid could be combined to reach > 55% oleic acid ?

Combining genes affecting % 18:1 from M23 (one gene), and N98-4445 (one or more of the six genes?) have generated phenotypes with >70% oleic acid in MO, but only about 55% in Iowa. Iowa State U.- Fehr lab

M23 x Pl283327

(n=299, Oleic acid range: 21.9-86.6%, Pop. mean: 49.2%)

Sources of mutant FAD2-1 alleles

- FAD2-1A: Chromosome 10
 - M23 (~100 kb deletion on chromosome 10); Bay background
 - 17D (S117N); Williams 82 background
- FAD2-1B: Chromosome 20
 - PI 567189A and PI 578451 (I143T); group IV
 - PI 283327 and PI 210179 (P137R); group V

Combinations of mutations in *FAD2-1* **genes create Non-GMO** high oleic acid soybeans

Figure 1. Seed oleic acid phenotype and *FAD2-1* genotype association analyses of soybean lines of the cross **PI603452** (FAD2-1A) x PI 283327 (FAD2-1B) grown in Columbia and Portageville MO in summer 2010

FAD2-1 genotypes

Oleic stability over 8 environments* for two 80% lines from M23 x PI 283327, 2010

	Mis				
	Col	Pville	Knox, TN	Stone, MS	Hi-Lo
S08-14707 aabb	75	80	78	81	6
S08-14717 aabb	76	82	82	80	6
PI 283327- parent	23	28	25	30	7
M23- parent	44	42	52	59	17
N98-4445A- check	47	56	64	63	17

Bilyeu, Shannon, Pantalone, Gillen two planting dates per location

What about stability of 18:1 further north

An FAD2-1A x FAD2-1B 80% oleic line from 17D x PI283327 grown in South Dakota in 2010 was 69% oleic, but probably late group III-group IV maturity but matured without frost damage.

Question- How much higher would oleic acid be if seed was from a line in a maturity adapted to S.D.?

Typical FA profile of high 18:1 F₂ seed used in 2010 MO, GA, NC, TN & AR crosses

Pedigree (87.5% adapted background)	16:0	18:0	18:1	18:2	18:3
S05-11482 x F2 (17D x S08-14788)	8.4	3.3	82.3	2.4	3.7
S06-10572RR x F2 (17D x S08-14788)	7.8	3.2	83.7	2.0	3.4
S06-4649RR x F2 (17D x S08-14788)	7.5	2.8	84.2	2.0	3.4
Average soybeans	11	4	24	53	8

Do these FAD2 mutations affect yield?

- Hoshino et al., 2010 (Breeding Science 60:419-425)
 M23- FAD2-1A 100 kb deletion- large deletion affects yield, thus any cross combination with M23 will likely affect yield.
 - KK21- (FAD2-1A) x B12 (FAD2-1B) single base pair deletions – 80% oleic with no affect on yield
 - 17D and PI603452- (FAD2-1A) and PI283327 (FAD2-1B_- single base pair deletion should not affect yield?

Molecular marker assays for accelerated plant breeding

- Genotype selections can be done early
- Less effort and investment for better results

Sources of HI oleic- GMO

• Pioneer-DuPont- "Plenish" on market in 2012

- Monsanto- "Vistive gold"
- Good yield and stable over environments

THANK YOU

- United Soybean Board for funding for the Better Bean Initiative Projects!
- QUESTIONS?