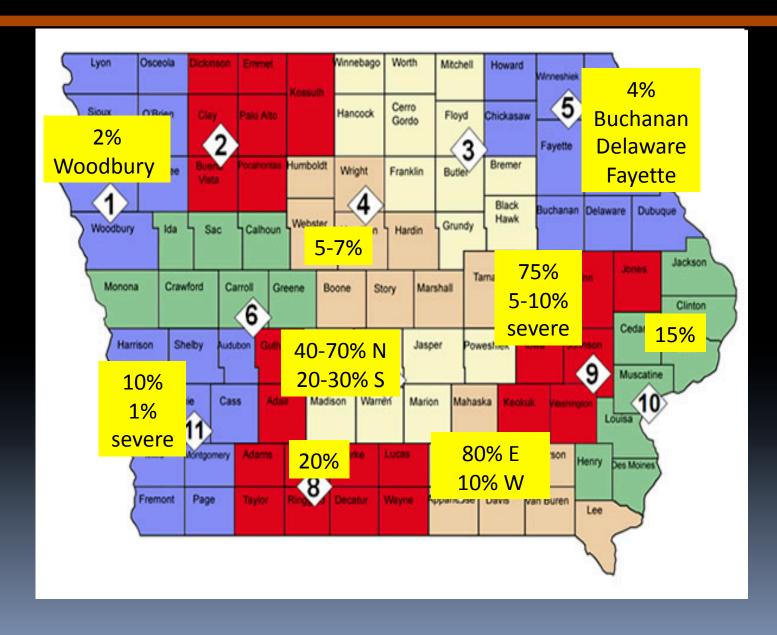


1994 SDS in Iowa



1994 SDS in Iowa

1998 SDS in Iowa

SDS Estimates in 2009

SDS – Fungal disease caused by Fusarium virguliforme

BREEDING EFFORTS TO IMPROVE SDS RESISTANCE IN SOYBEAN

Rationale for Breeding efforts

Relate to the plant

- Rapid spread of disease in soybean production areas
- Limited
 - number of genetic sources of resistance
 - knowledge of inheritance of resistance

Relate to the pathogen

- Screening tools amenable to differentiate small phenotypic effects
- Detailed genetic work to facilitate breeding resistance work in soybean

Breeding efforts

 Several groups are developing populations by crossing R x S genotypes

Some are using screening data and molecular information to select for resistance

 At ISU, we still cross R x S, and also starting to develop populations by crossing R x R genotypes

Sources of SDS resistance

Breeding at ISU

- LS98-0582
- LS99-2235LS94-3207
- Ripley

Sources of SDS resistanceBreeding at ISU

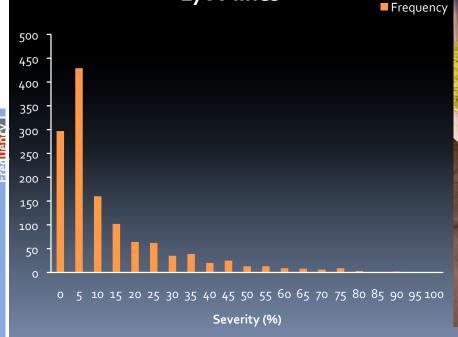
LS98-0582 LS99-2235 LS94-3207

□Ripley

	Disease Index				
	2004				
	IA	IA	Can	IL	IL
AR10SDS	1	9	1	1	16
MN 1606 SP (Res)	2	0	1	0	8
Venus RR (Res)	0	0	0	15	4
5171 RR (Susc)	4	8	0	15	20
	2005				
AR10SDS	0		14	O	0
MN 1606 SP (Res)	0		26	0	0
Venus (Res)	0		15	0	0
5171 RR (Susc)	0		19	2	20
	2007				
AR10SDS		2 (MN)	1 (IL)	O	0
MN1606 SP (Res)		10	0	0	0
Venus (Res)					
5171 RR (Susc)		20	8	4	17

The molecular information available

Population	# of QTL	Chromosomes
Essex x Forrest	9	13, 16, 6, 20, 13
Pyramid x Douglas	3	3,6,18
Hartwig x Flyer	2	18,8
Ripley x Spencer	3	4,17,19
PI ₅ 6 ₇₃₇₄ x Omaha	2	17, 20


Simultaneous work on

- I. Breeding for germplasm releases
 - Germplasm release spring2010
 - Searching for the proper combination of yield, SDS and MG for Iowa
- II. Considering interactions
 - SDS and SCN
 - SDS and BSR

- III. Research
 - modifications to the screening method (Luckew & Leandro)
 - new screening methods toxin use (Bhattacharyya's lab)
 - molecular marker development
 - search for new genes

- Find the number of QTLs that will confer adequate resistance
- Screen ~1700 lines for differing SDS resistance
 - Using the classic screening method

Distribution of Severity among the ~1700 lines

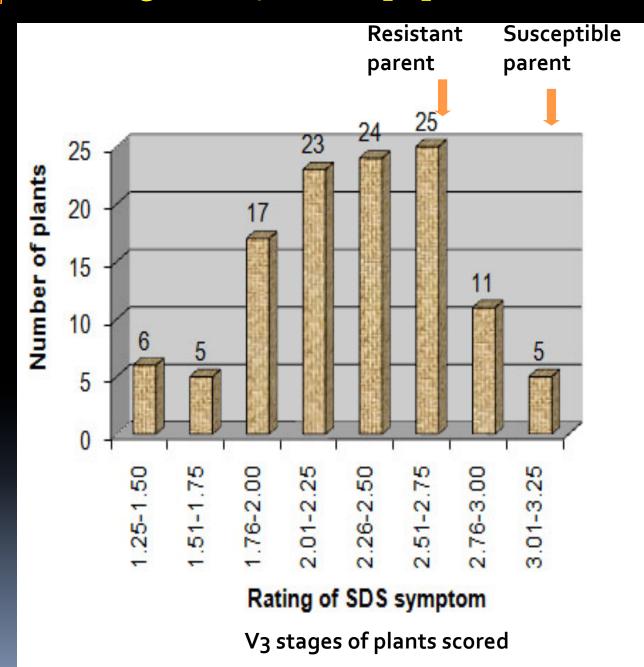
- The second screening method
 - Toxin assay using cultured filtrate
 - Mont-1 isolate
 - Plants with intact roots immersed in diluted toxin
 - Ten genotypes

Details of Inbred Soybean Lines

Population Name	Susceptible parent	Resistant parent	No. of Populations	No. of Subpopulation s
AX19286	A95-684043	LS94-3207	11	391
AX19287	A95-684043	LS98-0582	10	435
AX19288	A95-684043	LS99-2235	1	392
AX19289	IA1006	LS94-3207	4	446
AX19290	IA1006	LS98-0582	3	471
AX19291	IA1006	LS99-2235	1	85
AX19294	IA2050	LS94-3207	8	461

2 slight chlorotic flecks/ blotches

3 Leaf with inter-veinal chlororsis


4 - necrosis + chlorosis

5 extended Necrosis + cupping of leaves

Screening of AX19286 subpopulations

Therefore,

- The work is undergoing in several breeding labs, with interesting results
- Important work is underway on the pathogen
- Screening techniques are modified and new ones are under development, serving phenotyping efforts, better and more efficiently
- Lines in early maturity groups are and will be available for breeding for disease resistance.
- And, the collective work continuous