M-142

CRISPR/Cas9-mediated gene targeting of a cytochrome P450 gene in soybean hairy roots

*Junqi Liu**, Department of Agronomy and Plant Genetics, University of Minnesota, Minnesota, USA

Tomas Cermak, College of Biological Sciences, University of Minnesota, Minnesota, USA

Daniel Voytas, College of Biological Sciences, University of Minnesota, Minnesota, USA *Robert Stupar*, Department of Agronomy and Plant Genetics, University of Minnesota, Minnesota, USA

Targeted mutagenesis with the CRISPR/Cas9 system has recently become a routine technique. CRISPR/Cas9-mediated mutagenesis has also been achieved in both soybean hairy roots and transgenic plants. Typically, double-strand breaks are generated by the Cas9 nuclease/guide RNA complex at specific sites, and the most common mutations are small indels from error-prone non-homologous end joining pathway. In addition, double-strand breaks could also be repaired by homology-directed recombination, albeit at a much lower frequency, especially in somatic cells. By cloning CRISPR targets in combination with donor DNA/repair templates in a Gateway T-DNA vector, we detected homology-directed recombination events in a cytochrome P450 gene in hairy roots. Toward improving gene-targeting efficiency, we cloned the identical CRISPR targets and donor DNA/templates in a germini viral vector for hairy root transformation. The recombinant germini viral vector functions as an independent replicon upon cleavage off from the T-DNA region, which may lead to higher copy number of donor DNA/template per cell and subsequently higher homology-directed recombination events.