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Opportunity

Cost per Raw Megabase of DNA Sequence

National Human Genome
Research Institute

genome gov/sequencin gcosts
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The efficiency of phenotyping in the field has not changed
for decades while the genotyping 1s rapidly developing.

Source: http://immunoseq.com, http://www.ncsu.edu



From Remote Sensing to
Field Crop High Throughput Phenotyping
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Breeding Improvement Potential




Objectives

 Measure the canopy geometric features and test
the significance of plot row length as covariate
in yield estimation model.

* Develop the machine learning model for binary
soybean maturity classification using

multispectral (NIR/R/G/B) data.



Methods: Field Setup

e Two breeding trials:

Trial A (-5): Genomic selection study containing 2980 plots from
26 breeding populations (~120 RILSs), in single row 4 foot plots

Trial B ( ): Two sets of 60 selected soybean NAM lines,
replicated twice with RCBD, in four-row 12 {t plots

 Twelve ground control points (GCPs) and a white-and-black
calibration chessboard was used for spatial and radiation
control

e GPS was recorded using survey grade Differential-GPS unit



Methods: HTP platform setup

UAV platform: Octocoptor + Dual-Camera System

3DRobotics X8, 850g payload, Auto-
pilot and waypoint, 5 — 15 min duration

2xCanon S110, Lightweight, 12.1M Pixels,
Raw format compatible

One S110 was converted into a pure
NIR camera by Kolari Vision. Blue
Channel to record NIR




Methods: Experiment Pipeline



Intermediate Results

Ground Control Points

Reference Objects

Ground Control Points



Objectives

 Measure the canopy geometric features and test
the significance of plot row length as covariate
in yield estimation.



Experiment on GS Field

1.1 Measuring Canopy Geometric

Features
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Segmentation — Vector Design — Plot Basis Extraction — Feature
Calculation



- Canopy Size vs. Yield

1.1 Measuring Canopy Geometric
Features

Correlation between Canopy Size and Yield by Population
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Canopy Size vs. Yield

Features
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Experiment on NAM Field

1.2 Plot Row Length Covariate
Test
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Can we address these 1ssues to improve yield estimation model?



Yield Model Improvement

1.2 Plot Row Length Covariate
Test

Experiment Setup:

Sixty genotypes, 4-row plots, center two row for yield, RCBD

Model 1: Yield = Genotype + Block + error
Model 2: Yield = Genotype + Block + Row_Length + error

Residual Genotypic  Standard error for
Model

mean square  variance genotype mean

Model 1 78081 56385 238 0.33 895

Model 2 69919 52821 220 0.35 872




Discussion

1.2 Plot Row Length Covariate
Test

e Supervised classification model provided the information about
canopy geometric features in the soybean growing season from
HTP image data.

e Canopy size and plot row length highly correlate with yield up
to r =0.82 and the correlation varied by populations.

e Traditional yield estimation model was improved by
incorporating plot row length as covariate.



Objectives

* Develop the machine learning model for binary
maturity classification using multispectral

(NIR/R/G/B) data.
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Model Development

2 Development Maturity Prediction
Model

Multispectral information was extracted and averaged from the
whole plot and center rows spatial polygons on normalized
images.

Maturity Date Image Date Matured Plots

9/20 9/19 2
9/22,9/24 9/23 13
9/26 9/26 24
9/28, 9/30 9/30 525
10/2,10/4, 10/6 10/6 901
Random Forest Model:

Maturity (yes/no) ~NIR + R+ G + B



Model Accuracy

2 Development Maturity Prediction
Model

GS Trial, single row 4 ft plot, Model Development

I Reference data I

User accuracy

Matured Not matured Row total
(%)
Matured 824 263 1087 75.80
P"ed‘::tc;ed Not matured 255 6109 6364 95.99
Column total 1079 6372
* NS in accurge ulggrtgggggc}models built on center rows and overall plot
76.37 95.87

%
NAM Trnial, four—rovgl f2 ft plot, Model Validation

n‘IQTQ]] [sVaValhbholsValvs {07n\ — OQ nq

- Reference data I

User accurac
Matured Not matured Row total y

(%)
Matured 125 64 189 66.14
Firgdlicired Not matured 11 1000 1011 98.91
data
Column total 136 1064

Producer accuracy a1 oA a2 aQ



Model Validation

2 Development Maturity Prediction
Model

GS Trial | NAM Trial

W Over2Da W Over2
W -2 Dates W -2Date
W +2Dates W +2 Dat
W -1 Date W -1Date
W +1Date M +1 Dat
W Exact

B Exact




Discussion

2 Development Maturity Prediction
Model

e Binary random forest model achieved over 93% overall
accuracy to predict soybean maturity from time-course HTP
multispectral image data.

e The prediction ability of models developed from plot center
rows data 1s not significantly different from the one from
overall plot data.

e Blue and NIR bands are critical to make the soybean maturity
prediction.

e The maturity prediction model retained similar high accuracy
in an independent breeding trial with different plot type.



Final Thoughts (Opportunity)

e Data collected HTP platform could improve
yield estimation accuracy, maturity recording
efficiency, and enable yield prediction.

 Dynamic information during crop growing
season would increase the scope of yield
prediction.

 Convenience and throughput enable more
applications 1n other field crop research.



Final Thoughts (Challenge)

e Stable platform and robust sensors are
demanded for complicated experiments

e Weather / location limitation for UAV

e Com;

natible precision agriculture

e Multi-disciplinary collaboration

(Crop Sciences, Engineering, GIS, Statistics,
Computer Science)
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