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Challenge

Source: http://www.grida.no; Deepak et al. (2013)



Opportunity

The efficiency of phenotyping in the field has not changed
for decades while the genotyping is rapidly developing.

Source: http://immunoseq.com, http://www.ncsu.edu

  



From Remote Sensing to 
Field Crop High Throughput Phenotyping

Source: www.pbgworks.org, www.spltech.in, www. oceanoptics.com, blog.usi-inc.net  
     



Breeding Improvement Potential



Objectives

• Measure the canopy geometric features and test
the significance of plot row length as covariate
in yield estimation model.

• Develop the machine learning model for binary
soybean maturity classification using
multispectral (NIR/R/G/B) data.



Methods: Field Setup
• Two breeding trials:
Trial A (GS): Genomic selection study containing 2980 plots from
26 breeding populations (~120 RILs), in single row 4 foot plots
Trial B (NAM): Two sets of 60 selected soybean NAM lines,
replicated twice with RCBD, in four-row 12 ft plots
 
• Twelve ground control points (GCPs) and a white-and-black

calibration chessboard was used for spatial and radiation
control

 
• GPS was recorded using survey grade Differential-GPS unit
 
 



Methods: HTP platform setup
   UAV platform: Octocoptor + Dual-Camera System

3DRobotics X8, 850g payload, Auto-
pilot and waypoint, 5 – 15 min duration

2×Canon S110, Lightweight, 12.1M Pixels,
Raw format compatible  

One S110 was converted into a pure
NIR camera by Kolari Vision. Blue
Channel to record NIR



Methods: Experiment Pipeline



Intermediate Results
Ground Control Points

Ground Control Points

Reference Objects
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Objectives

• Measure the canopy geometric features and test
the significance of plot row length as covariate
in yield estimation.

• Develop the machine learning model for binary
maturity classification using multispectral
(NIR/R/G/B) data.



Experiment on GS Field
                           1.1 Measuring Canopy Geometric
Features

Segmentation – Vector Design – Plot Basis Extraction – Feature
Calculation

7/24, Soybean R3 (GS) Canopy Size
(%)

Plot Row Length (%)



Canopy Size vs. Yield
                           1.1 Measuring Canopy Geometric
Features



Canopy Size vs. Yield
                           1.1 Measuring Canopy Geometric
Features

r = 0.74



Experiment on NAM Field
                                 1.2 Plot Row Length Covariate
Test

Can we address these issues to improve yield estimation model?



Yield Model Improvement
                                 1.2 Plot Row Length Covariate
Test

Model 1: Yield  = Genotype + Block + error
Model 2: Yield  = Genotype + Block + Row_Length + error

Model
Residual

mean square

Genotypic

variance

Standard error for

genotype mean
H2 AIC

Model 1 78081 56385 238 0.33 895

Model 2 69919 52821 220 0.35 872

Experiment Setup:
Sixty genotypes, 4-row plots, center two row for yield, RCBD

         
       
 
 



Discussion
                               1.2 Plot Row Length Covariate
Test

• Supervised classification model provided the information about
canopy geometric features in the soybean growing season from
HTP image data.

 
• Canopy size and plot row length highly correlate with yield up

to r =0.82 and the correlation varied by populations.

• Traditional yield estimation model was improved by
incorporating plot row length as covariate.



Objectives

• Measure the canopy geometric features and test
the significance of plot row length as covariate
in yield estimation.

• Develop the machine learning model for binary
maturity classification using multispectral
(NIR/R/G/B) data.



Image Selection
                           2 Development Maturity Prediction
Model

9/19 9/26 10/6

Five dates 9/19, 9/23, 9/26, 9/30, 10/6 (GS)



Model Development
                           2 Development Maturity Prediction
Model

Maturity Date Image Date Matured Plots
9/20 9/19 2

9/22, 9/24 9/23 13
9/26 9/26 24

9/28, 9/30 9/30 525
10/2, 10/4, 10/6 10/6 901

Random Forest Model:        
Maturity (yes/no) ~ NIR + R + G + B

Multispectral information was extracted and averaged from the
whole plot and center rows spatial polygons on normalized
images.



Model Accuracy
                           2 Development Maturity Prediction
Model

  Reference data  

  Matured Not matured Row total User accuracy
(%)

Predicted
data

Matured 824 263 1087 75.80

Not matured 255 6109 6364 95.99

Column total 1079 6372   

 Producer accuracy
(%) 76.37 95.87   

Overall accuracy (%) = 93.05
  Reference data  

  Matured Not matured Row total User accuracy
(%)

Predicted
data

Matured 125 64 189 66.14

Not matured 11 1000 1011 98.91

Column total 136 1064   

 Producer accuracy
(%) 91.91 93.98   

GS Trial, single row 4 ft plot, Model Development
*

NAM Trial, four-row 12 ft plot, Model Validation

* NS in accuracy between models built on center rows and overall plot



Model Validation
                           2 Development Maturity Prediction
Model

A B

GS Trial NAM Trial



Discussion
                           2 Development Maturity Prediction
Model

• Binary random forest model achieved over 93% overall
accuracy to predict soybean maturity from time-course HTP
multispectral image data.

• The prediction ability of models developed from plot center
rows data is not significantly different from the one from
overall plot data.

• Blue and NIR bands are critical to make the soybean maturity
prediction.

• The maturity prediction model retained similar high accuracy
in an independent breeding trial with different plot type.



Final Thoughts (Opportunity)

• Data collected HTP platform could improve
yield estimation accuracy, maturity recording
efficiency, and enable yield prediction.

• Dynamic information during crop growing
season would increase the scope of yield
prediction.

• Convenience and throughput enable more
applications in other field crop research.



Final Thoughts (Challenge)

• Stable platform and robust sensors are
demanded for complicated experiments

• Weather / location limitation for UAV
• Compatible precision agriculture
• Multi-disciplinary collaboration        
   (Crop Sciences, Engineering, GIS, Statistics,
Computer Science)
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