Genetic Variation and Quantification of Amino Acids in Soybean

Vince Pantalone University of Tennessee



#### Wilson, 2012



## Soybean Meal Highly Desirable Feed Ingredient

- Comparative advantages
  - availability
  - crude protein
  - lower fiber
  - greater digestibility
  - higher net-energy
  - favorable levels growth-limiting amino acids

(Wilson, 2012)

## Soybean Meal

- Still a **cost effective** source of amino acids
- Excellent protein source to mix with corn meal

- Overconsumption of AA can lead to carbon dioxide and urea production
- Inadequate quantities of AA can lead to protein degradation

# Soybean Meal

- Different AA are important to different animals
- Met, Cys, Lys, Thr, and Trp for swine
- Met, Cys, Lys, Thr, Arg, and Val for poultry
- Soy is deficient in S-containing amino acids Met and Cys









FOSS 6500 NIRS

Perten DA 7250 NIRS

# Amino acid **wet chemistry** (HPLC)

- Accurate
- Costly
- Time consuming

#### Amino acid NIRS

- Accurate only to calibration curve and sample number & distribution
- Easily affordable
- Swift except seed grinding necessary



Prolina vs Brim parental lines at NCSU (Carlson; Cardinal) 18 field reps of parents showed <u>P <0.0001</u> genotypic differences for Methionine concentration

# 5,530 GRIN Soybean Accessions (g CYS / kg CP), FOSS 6500 NIR



#### 5,530 GRIN Soybean Accessions (g LYS / kg CP) FOSS 6500 NIR





Glycine soja – core collection As protein increases, the concentration of amino acids per kg crude protein decreases. But slope is less than in *Glycine max* Some amino acids e.g CYS show wider distribution, neutral slope in *G. soja* 



#### **Relationship between 7S and 11S**

- 11S contains about 3-4 times more Met and Cys than 7S
- Soybeans differing in 11S may lead to improvements in S-amino acids.

#### QTL for 7S and 11S

| Trait             | Marker             | MLG     | Position<br>(cM) | LOD<br>Score | R2(%)        |
|-------------------|--------------------|---------|------------------|--------------|--------------|
| 7S                | Satt461<br>Satt249 | D2<br>J | 99.4<br>64.5     | 2.1<br>2.3   | 11.6<br>10.3 |
| 115               | Satt461            | D2      | 99.4             | 2.3          | 19.5         |
| $\langle \rangle$ | Satt564            | G       | 15.1             | 3.7          | 21.8         |
| $\bigcirc$        | Satt191            | G       | 23.2             | 3.3          | 18.6         |
|                   | Satt292            |         | 2.0              | 2.0          | 9.5          |

# QTL associated with Met

|   | Marker  | MLG | Position<br>(cM) | LOD<br>Score | R2(%) |
|---|---------|-----|------------------|--------------|-------|
|   | Satt252 | F   | 16.1             | 2.8          | 15.2  |
| < | Satt564 | G   | 14.3             | 3.4          | 24.5  |
|   | Satt590 | Μ   | 7.8              | 2.4          | 22.9  |

# QTL associated with Cys

|   | Marker  | MLG | Position<br>(cM) | LOD<br>Score | R2(%) |
|---|---------|-----|------------------|--------------|-------|
|   | Satt436 | D1a | 70.7             | 2.6          | 9.5   |
|   | Satt252 | F   | 16.1             | 2.6          | 12.4  |
| < | Satt235 | G   | 21.9             | 2.8          | 12.6  |
|   | Satt427 | G   | 51.7             | 3.5          | 13.8  |

#### **Frequency distribution for Met+Cys**



#### Protein Quality Germplasm Line Developed & Released

(Panthee and Pantalone, 2006, Crop Sci. 46: 2328-2329) N04-5321: Higher protein, and <u>higher</u> <u>S-containing amino acids</u>

• Other breeders use as parent

# Soybean Seed Amino Acid Content QTL Detected Using the Universal Soy Linkage Panel 1.0 with 1,536 SNPs

Benjamin D. Fallen<sup>1,2\*</sup>, Catherine N. Hatcher<sup>3</sup>, Fred L. Allen<sup>2</sup>, Dean A. Kopsell<sup>2</sup>, Arnold M. Saxton<sup>2</sup>, Pengyin Chen<sup>4</sup>, Stella K. Kantartzi<sup>5</sup>, Perry B. Cregan<sup>6</sup>, David L. Hyten<sup>6,7</sup>, and Vincent R. Pantalone<sup>2</sup>

- Use the Universal Soybean Linkage Panel
- Expand knowledge of amino acid QTL



#### Amino Acid QTL F5:7-derived Population of • Essex 270 RIL of Essex Will amilia ms 82

• genetic background of many **S**. U.S. varieties

- genetic background of many **N**. U.S. varieties
- Determine native range of a.a. found in the genetic base of modern U.S. varieties
- Helps identify potential progress breeders can make within elite pool
- Likely need to access other germplasm sources







# QTL Analysis

- 1,000 permutations were performed on each amino acid for all chromosomes to establish a LOD threshold
- Marker order and position were obtained using R/qtl
- Multiple-QTL Mapping (MQM) and R/qtl were used for QTL mapping

A 1.5-LOD support interval (Broman and Saunak, 2009) was estimated for LGs C2 and L to determine a.a. QTL that were <u>not</u> maturity or growth habit for LGs C2 and L.

### LOD confidence interval illustration







**Figure 1.** Histogram of cysteine concentrations (g kg<sup>-1</sup> crude protein) from 282 F<sub>5:9</sub>-derived RILs of Essex x Williams 82 grown in Knoxville, TN, Stuttgart, AR, and Harrisburg, IL in 2009.

**Figure 2.** Histogram of methionine concentrations (g kg<sup>-1</sup> crude protein) from 282 F<sub>5:9</sub>-derived RILs of Essex x Williams 82 grown in Knoxville, TN, Stuttgart, AR, and Harrisburg, IL in 2009.

# Selected nutritionally important amino acid QTL in an F5:9-derived RIL population of Essex 86-15-1 x Williams 82-11-43-1 grown in TN, AR, and IL.

**Chr. 1-10** 

| <b>SNP Marker</b> | Amino<br>acid | C<br>hr | M<br>LG   | Location<br>(cM) | LOD | <b>R2</b><br>(%) |
|-------------------|---------------|---------|-----------|------------------|-----|------------------|
| ss107923612       | Val           | 5       | <b>A1</b> | 145.5            | 3.4 | 6                |
| ss107912624       | Trp           | 9       | K         | 0.0              | 3.1 | 5.7              |
| ss107920438       | Tyr           | 10      | 0         | 110.2            | 3.1 | 5.7              |

#### Chr. 11-20

| <b>SNP</b> Marker | Amino<br>acid         | Ch<br>r | ML<br>G | Location<br>(cM) | LOD           | R2 (%)        |
|-------------------|-----------------------|---------|---------|------------------|---------------|---------------|
| ss107912768       | Thr, Val              | 13      | F       | 0.0              | 3.6, 3.8      | 6.4, 6.7      |
| ss107917837       | Arg, Met,<br>Thr, Val | 13      | F       | 4.9              | 3.0 to<br>4.2 | 5.2 to<br>7.4 |
| ss107912633       | Arg, Val              | 13      | F       | 21.5             | 3.5, 3.0      | 6.1, 5        |
| ss107920654       | Arg, Val              | 13      | F       | 40.7             | 4.5           | 7.9, 7.9      |
| ss107924703       | Тгр                   | 13      | F       | 52.1             | 3.8           | 6.5           |
| ss107929220       | Cys                   | 20      | Ι       | 133.4            | 2.9           | 6             |

**Genetic Control of Soybean Amino Acid in Two Genetically Connected Populations – Dr. Carrin Carlson (NCSU, Dr. Cardinal)** 

- NC-Roy x Prolina (277 F4 RIL) and NC-Roy x NC-106 (270 F4 RIL)
- estimate heritability of and genetic correlations
- detect amino acid QTL

- Genomic regions on four linkage groups were significant for a majority of the a.a.
- Chr 3(N), Chr 6(C2), Chr 9(K), and Chr18(G).
- A Cys content QTL on Chr10(O) (88.1 93.2 cM) provides an opportunity to increase Cys content alone

- Significant, positive genetic correlations greater than 70% between concentrations of protein and all amino acids, except Cys, His, and Trp
- Implying opportunity to indirectly select for a.a. by selection for total protein.
- lack of ability to increase some a.a. while maintaining consistent levels of protein and remaining amino acids.

#### Dr. Warrington, UGA (Boerma)

- 140 F5-derived RILs from a 'Benning' × 'Danbaekkong'
- Each amino acid sample corrected as a percent crude protein content
- QTL were detected for crude protein (cp), Lys/cp, Thr/cp, Met/cp, Cys/cp, and Met+Cys/cp using DNA markers.

- Large-effect QTL on chr 20 inherited from Danbaekkong explained 55% of the phenotypic variance for crude protein
- The Danbaekkong protein QTL was found to be associated with <u>reduced</u> levels of each of the amino acids

- concentrations of S-containing amino acids may be improved by introgressing Danbaekkong a.a. allele on chr 10 and Benning alleles at QTL on chr 6, 14, and 18
- -- while still increasing the level of protein with the Danbaekkong QTL at chr 20

Mean amino acid composition (g kg-1 of crude protein) from 302 F5:11-derived RIL of Essex *x* Williams 82 grown in Knoxville, TN; Springfield, TN; and Milan, TN.

| Trait      | Min  | Mean | Мах  | LSD0.0<br>5 | h2 (%) |
|------------|------|------|------|-------------|--------|
| Cysteine   | 11.5 | 18.8 | 21.3 | 1.7         | 29.8   |
| Methionine | 12.9 | 17.0 | 18.1 | 1.0         | 53.9   |
| Lysine     | 63.2 | 70.9 | 73.7 | 1.8         | 59.3   |
| Threonine  | 37.5 | 42.1 | 43.9 | 1.1         | 78.0   |
| Tryptophan | 10.2 | 11.7 | 12.7 | 0.5         | 81.6   |

Combined location analysis of **QTL** using composite interval mapping for seed **amino acid composition** in 302 F5:11-derived RIL of Essex x Williams 82 grown in Knoxville, TN; Springfield, TN; and Milan, TN.

| Trait    | Chr         | <u>Molecular Marker</u> | Loc<br>(cM) | LO<br>D | Confidence<br>Interval of<br>QTL position | R2<br>(%) | Effect<br>g kg-1  |
|----------|-------------|-------------------------|-------------|---------|-------------------------------------------|-----------|-------------------|
| Cysteine | Gm 9        | Gm09_1723633_G_A        | 0.0         | 5.8     | 0.0-4.0                                   | 6.8       | 0.08(W)           |
| Cysteine | Gm 13       | Gm13_38249824_T_C       | 199.0       | 4.4     | 196.0-201.9                               | 4.5       | 0.06(W)           |
| Lysine   | Gm 6        | Gm06_45433980_G_A       | 57.2        | 6.4     | 52.0-60.3                                 | 7.4       | 0.18 ( <b>E</b> ) |
| Lysine   | Gm 7        | Gm07_14773717_G_T       | 48.7        | 3.4     | 38.2-87.8                                 | 5.6       | 0.14(W)           |
| Lysine   | <b>Gm 9</b> | Gm09_40970267_C_T       | 60.0        | 5.9     | 56.6-64.9                                 | 8.6       | 0.17( <b>E</b> )  |
| Lysine   | Gm 13       | Gm13_35823484-A_G       | 184.0       | 8.8     | 181.2-187.0                               | 12.0      | 0.20( <b>W</b> )  |
| Lysine   | Gm19        | Gm19_42089062_C_T       | 196.0       | 4.3     | 178.0-213.0                               | 5.4       | 0.14 ( <b>W</b> ) |

| Trait      | Chr†     | <u>Molecular Marker</u> | Loc §<br>(cM) | LO<br>D | Confidence<br>Interval of QTL<br>position | R2<br>(%) | Effect #<br>g kg-1 |
|------------|----------|-------------------------|---------------|---------|-------------------------------------------|-----------|--------------------|
| Methionine | Gm 9     | Gm09_1723633_G_A        | 0.0           | 6.0     | 0.0-4.85                                  | 7.4       | 0.06 (W)           |
| Methionine | Gm<br>13 | Gm13_35823484_A_G       | 184.0         | 5.4     | 183.0-191.9                               | 6.9       | 0.06(W)            |
| Methionine | Gm<br>18 | Gm18_2020495_C_T        | 5.1           | 3.1     | 5.0-12.0                                  | 4.0       | 0.05 (W)           |
| Threonine  | Gm<br>6  | Gm06_45871481_C_T       | 58.0          | 4.8     | 51.0-83.0                                 | 5.7       | 0.10 ( <b>E</b> )  |
| Threonine  | Gm<br>7  | Gm07_9913651_T_C        | 43.3          | 4.9     | 41.7-69.6                                 | 6.9       | 0.09 ( <b>W</b> )  |
| Threonine  | Gm<br>9  | Gm09_38958410_A_G       | 64.1          | 5.4     | 59.0-66.0                                 | 8.3       | 0.10( <b>E</b> )   |
| Threonine  | Gm<br>13 | Gm13_35370448_C_T       | 183.0         | 10.5    | 181.2-187.0                               | 14.3      | 0.14 ( <b>W</b> )  |
| Tryptophan | Gm 6     | Gm06_44116624_T_C       | 54.1          | 5.6     | 51.0-60.0                                 | 7.3       | 0.05( <b>E</b> )   |
| Tryptophan | Gm<br>13 | Gm13_36316916_C_T       | 188.3         | 5.3     | 182.0-204.6                               | 5.0       | 0.03 <b>(W</b> )   |



Are QTL detecting some of the key enzymes in the common enzymatic pathway towards production of Lysine and Threonine?

... further research for discussion ideas tomorrow.

#### Remarks

- Perfect SNP markers accelerate breeders' introgression
  - Nothing comparable exists for amino acids, yet
- Detection of QTL for 7S and 11S
  - needs confirmation no cq-QTL exist in Soybase
- Discoveries of Met and Cys QTL
  - Validated one released germplasm more needed
- Amino acid QTL
  - Need confirmation no cq-QTL exist in Soybase
  - accelerate protein quality breeding of U.S. soymeal



