Application of NIR spectroscopy for seed composition improvement in soybean

Jason D. Gillman USDA-ARS/PGRU 2-14-2017





Soybean seed lipid pool is almost completely (~88%) in the form of triacylglycerols

3

## Why go to the bother to create new NIRS calibrations?



C18:0 NIR predicted %

### Steps involved during NIR calibration

Identify/produce seed covering a broad phenotypic range, preferably with replication

Regression algorithm

Mathematical relationship (calibration model)

Y=f(X)

Constituent concentration Y

> (Obtained by standard wet chemistry methods)

Spectral Data X

\ \ ∫



### Phenotyping seed/kernel composition traits

- FOSS 6500 Near Infrared <u>Reflectance</u> spectroscopy
- ~50-100 whole seeds per field plot, all plots in RBCD triplicate
- Scan time ~30 seconds





FOSS® 6500 NIR Instrument

Partial Least Squares 1 (UnScrambler® software)

Mention of a trademark, vendor, or proprietary product does not constitute a guarantee or warranty of the product by the USDA and does not imply its approval to the exclusion of other products or vendors that may also be suitable.

#### Step 1A: Identify and phenotype appropriate samples

- Elevated Stearic acid 194d x A6 (~11% x 24%)
  - 176 RILs x 3 plot replicates
- Elevated Oleic acid (>60%) and low linolenic acid (<6%)
  - A few had unique combinations (e.g. >10% stearic acid/>70% oleic acid)
  - 23 RILS x 3 replicates in two locations
  - 16 additional RILS x 3 replicates in only one
- Various single mutant lines (*†*stearic, *†*↓oleic, ↓palmitic, ↓linolenic)
  - Single replicates across multiple years
- Wild type lines (8) across a range of gene backgrounds and maturities
  - Multiple replicates across multiple years
- Wet chemistry/GC analysis: triplicate per plot

Gas chromatography analysis destructive assay Relatively slow/non-automatable





| Fatty Acid                                                                                      | n   | mean  | SD    | CV   | Range         | Difference |  |  |
|-------------------------------------------------------------------------------------------------|-----|-------|-------|------|---------------|------------|--|--|
| C16:0                                                                                           | 687 | 8.91  | 1.32  | 0.05 | 2.78 - 12.62  | 9.84       |  |  |
| C18:0                                                                                           | 687 | 12.30 | 6.25  | 0.24 | 1.85 - 28.04  | 26.19      |  |  |
| C18:1                                                                                           | 687 | 34.65 | 24.62 | 0.94 | 16.05 - 89.44 | 73.39      |  |  |
| C18:2                                                                                           | 687 | 38.43 | 18.37 | 0.70 | 1.24 - 58.66  | 57.42      |  |  |
| <b>Table 1</b> Fatty Acids measurement of all the Soybean samples in the NIR calibration $7.11$ |     |       |       |      |               |            |  |  |
| Number of samples (n): Standard deviation (SD): coefficient of variation (CV)                   |     |       |       |      |               |            |  |  |

A Karn, C. Heim, S. Flint-Garcia, K. Bilyeu, K.; J. Gillman, J., *JAOCS* (2017) 94, 69-76.

### Step 1B. Collecting NIR reflectance data

- Spectra collected from wavelength 400nm – 2490nm with the increment of 10nm
- Removed spectra below 900nm
- Collected spectra were treated with <u>Multiple Scatter Correction</u> (<u>MSC</u>) and <u>1st derivative</u> (one was also treated with 2nd derivative)
- Why? Reduced the noise caused due to spectral scattering and increase signal intensity





MSC of NIR reflectance spectra



A Karn, C. Heim, S. Flint-Garcia, K. Bilyeu, K.; J. Gillman, J., JAOCS (2017) 94, 69-76.

## Critical: Inspect your data for outliers



### We tested several mathematical processing steps of spectral data



MSC and 1st derivative dramatically improved our predictions (for one we also did a 2nd derivative)

#### A broad multiply replicated range of phenotypes were incorporated into the NIR calibration







### Error and accuracy are relative and models should be goal driven



A Karn, C. Heim, S. Flint-Garcia, K. Bilyeu, K.; J. Gillman, J., JAOCS (2017) 94, 69-76.

#### We split all samples into two sets – calibration and

|             |                |     |                | <b>I</b> *          |                |      |      |        |      |
|-------------|----------------|-----|----------------|---------------------|----------------|------|------|--------|------|
|             | Fatty<br>Acids | n   | Spectral range | NIR<br>Pretreatment | PLS<br>Factors | SEC  | SECV | RMSECV | r    |
|             | C16:0          | 583 | 900 - 2500 nm  | MSC; 1 Der          | 7              | 0.64 | 0.67 | 0.67   | 0.82 |
|             | C18:0          | 588 | 900 - 2500 nm  | MSC; 1 Der          | 12             | 1.78 | 2.17 | 2.17   | 0.95 |
|             | C18:1          | 596 | 900 - 2500 nm  | MSC; 1 Der          | 7              | 5.81 | 6.14 | 6.14   | 0.97 |
| Tab         | C18:2          | 591 | 900 - 2500 nm  | MSC; 1 Der          | 6              | 3.61 | 3.73 | 3.73   | 0.98 |
| Nur<br>vali | C18:3          | 584 | 900 - 2500 nm  | MSC; 1 Der          | 6              | 0.64 | 0.66 | 0.66   | 0.92 |

**Table 3** External validation statistics in NIR models for the estimation of individual fatty acids Number of samples (n); standard error of performance (SEP); Root mean square error for prediction (RMSEP); Ratio of standard deviation of data to standard error of performance (RPD); coefficient of correlation (r), t-test statistic.

| Fatty<br>Acid | n  | Mean  | Range            | SD            | SEP            | RMSEP          | RPD                  | r             | t Sta |
|---------------|----|-------|------------------|---------------|----------------|----------------|----------------------|---------------|-------|
| C16:0         | 93 | 8.97  | 6.58 - 12.44     | 1.04          | 0.66           | 0.65           | 1.57                 | 0.77          | 0.74  |
| C18:0         | 93 | 13.45 | 3.24 - 27.57     | 6.17          | 1.85           | 1.84           | 3.34                 | 0.95          | -0.3  |
| C18:1         | 93 | 31.33 | 16.5 – 84.95     | 22.00         | 4.89           | 4.99           | 4.50                 | 0.97          | -2.2  |
| C10.0         | 00 |       | A Karn, C. Heim, | S. Flint-Garc | cia, K. Bilyeu | , K.; J. Gillm | an, J., <i>JAOCS</i> | 5 (2017) 94,6 | 9-76. |

### External validation (of at least a subset) is very important when applying calibration on external samples

C18:1 %

Very predictive due to: high concentration in seeds

large phenotypic differences





C16:0 %

Genes not in calibration set + low end "flatness" = lower correlation coefficient



A Karn, C. Heim, S. Flint-Garcia, K. Bilyeu, K.; J. Gillman, J., JAOCS (2017) 94, 69-76.

# Sources of variance in seed quality traits

Genotypic effects Location effects Year effects Replication effects (plot x plot) Plant x Plant (often ignored) Seed on a plant (often ignored)

48 individual seed/plot (3 RBCD plots)



### Single seed NIR prediction calibrations have been previously



Traits with Single Seed NIR
cross- external

|                                | cross-<br>validatior     |         | ross-<br>lidation | external validation |                |       |      |
|--------------------------------|--------------------------|---------|-------------------|---------------------|----------------|-------|------|
| seed trait                     | spectral<br>pretreatment | factors | R <sup>2</sup>    | RMSEP               | R <sup>2</sup> | RMSEP | RPD  |
| % oil                          | MSC                      | 10      | 0.98              | 0.54                | 0.97           | 0.47  | 5.67 |
| % protein                      | MSC                      | 9       | 0.84              | 1.53                | 0.84           | 1.48  | 2.28 |
| density (g/cm <sup>3</sup> )   | first der.               | 10      | 0.72              | 0.06                | 0.35           | 0.07  | 0.91 |
| weight (mg)                    | none                     | 10      | 0.97              | 9.59                | 0.94           | 9.80  | 5.21 |
| volume (mm <sup>3</sup> )      | none                     | 9       | 0.96              | 8.53                | 0.94           | 8.21  | 4.33 |
| max area<br>(mm <sup>2</sup> ) | first der.               | 7       | 0.84              | 0.03                | 0.82           | 0.03  | 2.31 |
| length (mm)                    | first der.               | 3       | 0.68              | 0.49                | 0.62           | 0.50  | 1.68 |
| width (mm)                     | second der.              | 7       | 0.79              | 0.41                | 0.65           | 0.37  | 1.74 |
| % air space                    | none                     | 13      | 0.79              | 1.62                | 0.45           | 1.79  | 1.25 |

Figure 1. Component assembly used for spectral measurements.

2 locations 9 genotypes 3 plots/genotype (RBCD) 24 or 48 seed/plot

Individual seed were run through the instrument 3 times and spectra were averaged

Paul Armstrong USDA-ARS

DOI: 10.1021/acs.jafc.5b05508 J. Agric. Food Chem. 2016, 64, 1079–1086

P. R. Armstrong, J. Tallada, C. Hurburgh, D. Hildebrand, J. Specht (2011) ASABE **54**, 1529-1535

#### There is considerable within-plot variation in soybean for % seed protein



### There is considerable within-plot variation in soybean for % seed oil







## But with enough seeds it's possible to detect entry, location and (entry x location) differences

### • (n=24 for RB2015, n=48 for STV2015)



Anova/HSD overlapping letters indicate insignificantly different means  $(\alpha=0.05)$ 

1

## Within-plot variance is most likely driven by canopy position based variation



- Protein is higher closer to the base of the plant
  - Oil is higher closer to the top of the canopy
    - Ionomic components are also affected

### Acknowledgements and questions?

- Crystal Buerke Heim (grad student, Univ. of Missouri)
- Avinash Karn (grad student, Univ. o
- Germplasm/cultivars
  - Dr. Kristin Bilyeu
  - Dr. Walter Fehr (Iowa State, emeritus)
  - Dr. Andrea Cardinal (formerly NCSU)
  - Dr. Toyoaki Anai (Saga University, Japan)
  - Dr. David Sleper (Univ. Missouri, emeritus)USDA GRIN



| Seed oil modification           | Gene Mutant Allele Mutant (cultivar)                                                     |               | Mutant (cultivar)   | Reference                                                                   |  |  |
|---------------------------------|------------------------------------------------------------------------------------------|---------------|---------------------|-----------------------------------------------------------------------------|--|--|
|                                 | FAD2-1A                                                                                  | S117N         | 17D (W82)           | (Dierking and Bilyeu 2009)                                                  |  |  |
| Elevated oleic acid             | FAD2-1A                                                                                  | indel         | PI603452            | ( <u>Pham, Lee et al. 2010</u> )                                            |  |  |
| Range (16.1 - 89.4%)            | FAD2-1B                                                                                  | P137R         | PI283327            | ( <u>Pham, Lee et al. 2010</u> )                                            |  |  |
|                                 | Unknown                                                                                  | Unknown       | FA8077              | ( <u>Graef, Miller et al. 1985</u> )                                        |  |  |
|                                 | FAD3A                                                                                    | splice        | CX1512-44           | ( <u>Bilyeu, Palavalli et al. 2005</u> )                                    |  |  |
| Reduced linolenic acid          | FAD3A                                                                                    | W266*         | C1640 (Century)     | (Chappell and Bilyeu 2006)                                                  |  |  |
| C18.5↓  <br>Range (1.75 - 9.5%) | FAD3A                                                                                    | indel         | PI361088B           | (Chappell and Bilyeu 2007)                                                  |  |  |
|                                 | FAD3C                                                                                    | G128E         | CX1512-44           | ( <u>Bilyeu, Palavalli et al. 2005</u> )                                    |  |  |
| Reduced palmitic acid           | FATB1A                                                                                   | W231L         | A22                 | (De Vries, Fehr et al. 2011)                                                |  |  |
| C16:0↓(2.78 - 12.62%)           | KAS3                                                                                     | Splice defect | C1726 (Century)     | (Cardinal, Whetten et al. 2013)                                             |  |  |
|                                 | SACPD-C                                                                                  | P286L         | RG8 (C1640/Century) | (Boersma, Gillman et al. 2012)                                              |  |  |
|                                 | SACPD-C                                                                                  | V211E         | 194D (W82)          | ( <u>Gillman, Stacey et al. 2014</u> )                                      |  |  |
| Elevated stearic acid           | SACPD-C                                                                                  | Indel         | M25 (Bay)           | ( <u>Mizanur, Takagi et al. 1995</u> , <u>Gillman, Stacey et al. 2014</u> ) |  |  |
| Range (1.85 - 28.04%)           | SACPD-C                                                                                  | deletion      | A6 (unknown)        | (Hammond and Fehr 1983, Gillman, Stacey et al. 2014)                        |  |  |
|                                 | SACPD-C                                                                                  | deletion      | MM106 (Bay)         | (Mizanur, Takagi et al. 1995, Rahman, Takagi et al. 1997)                   |  |  |
|                                 | SACPD-B                                                                                  | Deletion(*)   | KK2 (Bay)           | ( <u>Rahman, Takagi et al. 1997</u> )                                       |  |  |
|                                 | N/A                                                                                      | N/A           | 'Williams 82'       | (Bernard and Cremeens 1988)                                                 |  |  |
|                                 | N/A                                                                                      | N/A           | 'Bay'               | ( <u>Buss, Smith et al. 1979</u> )                                          |  |  |
|                                 | A Karn, C. Heim, S. Flint-Garcia, K. Bilyeu, K.: J. Gillman, J., JAOCS (2017) 94, 69-76. |               |                     |                                                                             |  |  |