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s Phenomics a bandwagon?

A bandwagon has three | .. N
phases: excitement, ttarmat  Rudlabon Ry
realization, and reality

Excitement phase: period of
hype, attention, funding, and
participation.

Realization phase: extensive
research and evidence on
technology/tool. 1991 2016

Reality phase: (1) is e
successful, becomes part of

mainstream practice in the

discipline OR (2) if

unsuccessful, it is abandoned.
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Source: Bernardo (2016). TAG, 129(12)



Phenomics, in early 2000’s...

e “The term ‘phenomics’ is coined to describe, in
anticipation, the new field that is likely to form
from the behavioral and other phenotypic
analyses designed to obtain a large amount of
information on the varying effects of genetic
mutations.”

— Gerlai (2002; Trends in Neurosciences, v25(10))
* |Intent was to match the genomic revolution to

phenotyping revolution (by removing the
phenotyping bottleneck)



Post 2010, Phenomics definition
has evolved....

* Phenomics has been defined as the
acquisition of high-dimensional phenotypic
data on an organism-wide scale (Houle et al.
2010, Nature Review Genetics, 11)

e (Plant) Phenomics is the study of phenomes of
multiple genotypes (Dhondt et al. 2013, TIPS
18(8))

— Phenome: set of all possible phenotypes of a
given genotype



Connection with Plant breeding?

# of plants or genotypes to phenotype is large; complex
(morphological, maturity differences)

We create new variation each year

Measure several traits simultaneously (these traits vary in
organizational scale — canopy, whole plant, tissue, cell level)

Several environment of concurrent or non-concurrent
testing

Sometimes we are interestedin time series measurements,
for example diseases, physiology..



High-dimensional phenotypic data...

Phenotypic trait examples
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TRENDS in Blant Science

Plant phenotyping (shown as single column of cubes) is the quantitative or qualitative

investigation of traits (structural, performance based, physiological) at any organizational
level, in a given genotype and a given environment.

A phenome (shown by combination of and ' cubes) corresponds to all possible
phenotypes under different environmental conditions of a given genotype.

Plant phenomics (shown by combination of , ' , ' cubes) could be considered as
the study of phenomes of multiple genotypes.

Dhondtet al. 2013, TIPS 18(8)



+ Spatio-temporal phenotyping
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Examples of ground systems and their
capabilities....
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BoniRob: http://www.fieldrobot.com/event/wp-content/uploads/2016/06/Bonirob-16.jpg; In-between rows phenotyping: http://vigir.missouri.edu/FieldPhenotyping.htm;
Apple orchard: http://www.freshfruitportal.com/news/2013/09/02/australian-researchers-branch-out-with-robot-farming/; Field phenomics (high clearancesprayer
converted unit): http://www.fieldphenomics.org/research/vehicles; Lemnatec: http://www.lemnatec.com/products/hardware-solutions/scanalyzer-field/;



Automated vs manual phenotyping
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Phenomics: new insights, better
predictions...

e >450 unique soybean Pl accessions phenotyped (IDC) using tri-band
channels to extract pixel information

e Deployed machine learning algorithms to generate ML-score (1-5
scale) and ML-severity (0-100 scale) for genome wide association

ML identified useful candidate gene, not picked up by visual ratings
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10 % ¢ ML-score A ML-severity Identification Classification ™

~log1o(P)
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Chromosome

 Developed an ability to automated rating (to more traits..
e |mprovementsin prediction accuracy by integrating phenotyping
information in prediction models

Source: Zhang et al. (2017) (Submitted), Singh et al. (2016) TIPS



Canopy Temperature and Vegetation Indices from
High-Throughput Phenotyping Improve Accuracy of
Pedigree and Genomic Selection for Grain Yield

in Wheat

Jessica Rutkoski,*"*' Jesse Poland,® Suchismita Mondal,* Enrique Autrique,* Lorena Gonzalez Pérez,*

José Crossa,” Matthew Reynolds,* and Ravi Singh*
*Intemational Programs, College of Agriculture and Life Sciences, and TPlant Breeding and Genetics Section, School of

Integrated Plant Sciences, Cornell University, Ithaca, New York 14853, *Global Wheat Program, International Maize and
Wheat Improvement Center (CIMMYT), Ciudad de Mexico, 06600, Mexico, and §Department of Plant Pathology, Kansas

State University, Manhattan, Kansas 66506
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More easily capturing traits previously not
possible..

[
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Video Article
Tomato Analyzer: A Useful Software Application to Collect Accurate and

Detailed Morphological and Colorimetric Data from Two-dimensional Objects

Gustave R. Rodriguez’, Jennifer B. Moyseenko', Matthew D. Robbins'. Nancy Huarachi Merejon', David M. Francis', Esther van der Knaap'
"Depariment of Horicuiture and Crop Scence, The Ohio State Univessity

Comespondence to: Esther van der Knaap at vanderknaap. 1 @osu.sdu

URL: hitp=itwanejove. comivideo/ 1858
DOl doi: 10.3721/1856

Keywords: Plant Bickogy, Issue 37, morphology, cobor, image processing, quantitative frait boci, software
Ciate Published: 3182010

Citation: Rodriguez. G.R., Moyseenko, J B., Robbins, M_D., Huarachi Morsion, M., Francis, .M., van der Knaap, E. Tomato Analyzer: A Ussfu

Software Apphication to Collect Accurate and Detailed Morphological and Colorimetric Data from Two-dimensional Objects. J. Vis. Exp. (37), 21858,
doiz10.3791/1858 (201D}

e measures 37 attributes

e Can this be done by human
raters?

Source: Rodriquez et al. 2010. J. Vis. Exp. 37: 1856



More easily capturing traits previously not
possible... (shape descriptors, lifecycle)
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Unravel Soybean Canopy Diversity

Talukder Z. Jubery ', Johnathon Shook?, Kyle Parmley?, Jiaoping Zhang?, Hsiang 5. Naik’,
Race Higgins®, Soumik Sarkar’, Arti Singh?, Asheesh K. Singh?®* and
Baskar Ganapathysubramanian 4

' Depariment of Mechanical Engineering, iowa Stale Linversty Amas, 4, LISA, 7 Department of Agrononmy: iowa Siats
Linfversily, Ames, (4, LISA, ? Dapartmant of Becincal snd Computar Engineering, iowa State Lnversly Amas, 4, LS4,
! Piart Sokences nsttus, lows Stale Univarsiy, Ames, 14, US4

A ,s Aspect Ratio, RZ=1,0 B o4 Roundness, R%=1.0

=
X

Reconstructed
w
Reconstructed
(=]
B

e
s

Ll
Aspect Ratio s LW

0.5" - - 0 . - - .
0.5 1 1.5 2 25 0 0.1 0.2 0.3 0.4
Original Original
Cc - Gircularity, R%=1.0 D y Solidity, R%=1.0
1.2| 1
= L=
2 44 -}
| Sos
% e . % 0.8
% _\""— &
& i -"‘- J:;':‘-'_‘ & "’-{_
Sty
04 . @ 0.7 :
2 1 ) ) ) u.tn_.mw.m-rm -.-.n n 6 ) Mwwxﬂ‘r}
02 04 06 08 1 12 0.6 0.8 1
Qriginal Qriginal

Source: Jubery etal. 2017. FIPS, 7:2066



Going where we dared not go before -
Root Exploration

Phenotypic reality Trench excavation Soil core Root crown —
excavation 1N |

Computed Tomography (CT);
MagneticResonance Imaging
(MRI)

Funding:
Monsanto Chair in Soybean Breeding; Baker Center (ISU)

Image source: Topp et al, 2016; Kochian, 2016, NSF (EAGER)
Falk (2017, ISU) IA Soybean Research Center



Finding new applications (microscope
level); No need to re-invent the wheel..
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Soybean breeders moving to technology
doption

Computers and Electronics in Agriculture 128 (2016) 181-192

Contents lists available at ScienceDirect

Computers and Electronics in Agriculture

journal homepage: www.elsevier.com/locate/compag

Original papers

A multi-sensor system for high throughput field phenotyping in soybean @ .
and wheat breeding

Geng Bai®, Yufeng Ge **, Waseem Hussain ”, P. Stephen Baenziger"”, George Graef"”

* Department of Biological Systems Engineering. University of Nebraska-Lincoln, Lincoln, NE 68583, USA
" Department of Agrenomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE 68583, USA

ARTICLE INFO ABSTRACT

Article history: Collecting plant phenotypic data with sufficient resolution (in both space and time) and accuracy repre-
Rerelved 10 May 2016 sents a long standing challenge in plant science research, and has been a major limiting factor for the
Received in revised form 22 August 2016 effective use of genomic data for crop improvement. This is particularly true in plant breeding where col-
Accepted 28 fmgustzmﬁ lecting large-scale field-based plant phenotypes can be very labor intensive and costly. In this paper we
Available online 14 September 2016 . . P "

reported a multi-sensor system for high throughput phenotyping in plant breeding. The system com-
prised five sensor modules (ultrasonic distance sensors, thermal infrared radiometers, NDVI sensors, por-
table spectrometers, and RGB web cameras) to measure crop canopy traits from field plots. A GPS was
Canopy reflectance used Fo geo-reference [h§ sensm‘n‘_\easuremen[s Two e,wimnmen}al sensors (a solar radia[if‘m sensor
Canopy temperature and air temperature/relative humidity sensor) were also integrated into the system to collect simultane-
LabVIEW ous environmental data. A LabVIEW program was developed to contrel and synchronize measurements
RGB image from all sensor modules and stored sensor readings in the host computer. Canopy reflectance spectra (by
portable spectrometers) were post processed to extract NDVI and red-edge NDVI spectral indices; and
RGB images were post processed to extract canopy green pixel fraction (as a proxy for biomass). The sen-
sor system was tested in a soybean and wheat field trial. The results showed strong correlations among
the sensor-based plant traits at both early and late growing season. Significant correlations were also
found between the sensor-based traits and final grain yield at the early season (Pearson’s correlation
coefficient r ranged from 041 to 0.55) and late season (r from 0.55 to 0.70), suggesting the potential
use of the sensor system to assist in phenotypic selection for plant breeding. The sensor system per-
formed satisfactorily and robustly in the field tests. It was concluded that the sensor system could be

a powerful tool for plant breeders to collect field-based, high throughput plant phenotyping data.
© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-ne-nd/4.0/).

Keywords:
High throughput field phenotyping
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Remote Sensing of Environment 187 (2016) 91-101

Contents lists available at ScienceDirect

Remote Sensing of Environment

journal homepage: www.elsevier.com/locate/rse

Development of methods to improve soybean yield estimation and
predict plant maturity with an unmanned aerial vehicle based platform

Neil Yu? Liujun Li®, Nathan Schmitz, Lei F. Tian ®, Jonathan A. Greenberg <, Brian W. Diers **

# Department of Crop Sciences, University of lllinois at Urbana-Champaign. 1101 W. Peabody Drive, Urbana, IL 61801, USA
b Dy of Agricultural and Biobgical ering, University of Mlinois at Urbana-Champaign, 1304 W, Pennsylvania Avenue, Urbana, IL 61801, USA
© Department of Geography and Geographic Information Science, University of llinois at Urbana-Champaign, 605 East Springfield Avenue, Champaign, IL, USA

ARTICLE INFO ABSTRACT

Article history: Advances in phenotyping technology are critical to ensure the genetic improvement of crops meet future global
Received 13 May 2016 demands for food and fuel. Field-based phenotyping platforms are being evaluated for their ability to deliver the
iﬁg"’l‘;ﬂ Té«z\:ﬁf;&rﬁﬂipl&nﬂer me necessary throughput for large scale experiments and to provide an accurate depiction of trait performance in
Am"':mg anline 12 October 2016 real-world environments. We developed a dual-camera high throughput phenotyping (HTP) plaform on an un-

manned aerial vehicle (UAV) and collected time course multispectral images for large scale soybean [Glycine max
Keywords: (L) Merr.] breeding trials. We used a supervised machine learning model ( Random Forest) to measure crop geo-
Soybean metric features and obtained high correlations with final yield in breeding populations (r = 0.82). The traditional

Breeding efficiency yield estimation model was significantly improved by incorporating plot row length as covariate (p < 0.01). We
UAV developed a binary prediction model from time-course multispectral HTP image data and achieved over 93% ac-
Multispectral image curacy in classifying soybean maturity. This prediction model was validated in an independent breeding trial
Object dassification with a different plot type. The se results show that multispectral data collected from the UAV-based HTP platform
could improve yield estimation accuracy and maturity recording efficiency in a modern soybean breeding
program.
© 2016 Elsevier Inc. All rights reserved.
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Numerous other examples of breeder engagement in similar activities: Indiana, lowa, Kansas,

Missouri, .......




Is Phenomics a bandwagon or a discipline?

: e * Abandwagon has three phases: excitement, realization, and reality
e *  Excitement phase: period of hype, attention, funding, and participation.
(YES)
% B _:, iacmewidesdaction.  ® Realization phase: extensive research and evidence on technology/tool.
H“»i,.__} Linkage mapping of QTL (YES)
. Reality phase: (1) is successful, becomes part of mainstream practice in
> Association mapping the discipline OR (2) if unsuccessful, itis abandoned. (TBD)

1991 2016
Time

While the Linkage, Association mapping, GWP are tools/techniques, “Phenomics” is
not a tool... (is it a field of study or perhaps a discipline similar to genomics?)

New definition?: Phenomics is the discipline that studies phenomes of multiple
genotypes through acquisition of high-dimensional phenotypic data on an organism-
wide scale?

“The culture of the discipline, for example, consists of a "knowledge tradition" that
includes categories of thought, a common vocabulary, and related codes of conduct.”
It will require continued participation of (and partnerships between) breeders,
scientists, engineers, statisticians; and linkages with funding agencies!!!

(Big Data and ML/DL are here to stay; new tools applicable in phenomics are being
built) Producer, Private, Public partnership to shape this emerging discipline

Source: Bernardo (2016). TAG, 129(12); Frost and Jean, 2003. The Journal of Higher Education, 74(2): 119-149
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