Soybean Meal Value **Considerations**

Nick Bajjalieh, PhD

🖳 Integrative Nutrition, Inc.

Focus is on Amino Acids

- Soybean meal is used primarily as a source of supplemental amino acids in poultry and swine feeds
- Growing poultry and swine have a dietary need for specific amino acids, not crude protein.
 - Crude protein is based on nitrogen content
 - Crude protein is an inadequate descriptor of nutritional value
 - With the evolution of improved measurement tools, nutritionists have moved away from using Crude Protein to Amino Acids
 - Digestible Amino Acids is preferable to Total Amino Acids

Integrative Nutrition, Inc.

Focus is on Amino Acids

- Nutritionists use soybean meal to provide limiting amino acids in poultry and swine feeds.
 - In domestic feeds, corn is typically the major ingredient
 - Amino acid levels in corn will not support optimum health and growth, therefore the need for supplemental sources of amino acids

- For over 50 years, SBM has been a primary source of supplemental amino acids in feeds

"Tag-Along" Value

- While the level and balance of amino acids in soybean meal are the primary driver of meal usage, other characteristics represent "tag-along" value such as:
 - Nutritionally available energy
 - Minerals
 - Vitamins
- The combination of all nutritional characteristics represents SBM's "Nutritional Bundle"

User: NICK INTEGRATIVE NUTRITION INC.

Date: 11/1/2012 Time: 17:09 Ingredient Report As Fed Page: 1

Plant: USBGV -USB Meal Trait GAV Matrix

Ingredient	48% Soybean Meal		
Nutrient Code	Description	Units	Level
1	Weight	Lbs	1
3	Moisture	%	10
4	Dry Matter	%	90
6	Met Energy Poultry	kçal/lb	1,109
9	Digest Energy Swine	kcal/lb	1,673
10	ME Swine	kgal/lb	1,500
11	Net Energy Swine	kcal/lb	967
12	ME Swine Mcal/lb	Mcal/lb	1.5
20	Crude Protein	%	47.5
24	Dig Lys Swine	%	2.72
25	Dig Thr Swine	%	1.61
26	Dig Met Swine	%	0.61
27	Dig TSAA Swine	%	1.25
28	Dig Try Swine	%	0.59
29	Dig Val Swine	%	2.02
30	Lysine	%	3.00
31	Threonine	%	1.88
32	Tryptophan	%	0.69
33	Methionine	%	0.71
34	Meth + Cys	%	1.41
35	Arginine	%	3.67
36	Histidine	%	1.20
37	Leucine	%	3.63
38	Isoleucine	%	2.13
39	Phenylalanine	%	2.36
40	Phenylala + Tyrosine	%	4.07
41	Valine	%	2.47
44	Dig Lys Poultry	%	2.75
45	Dig Thr Poultry	%	1.63
46	Dig Met Poultry	%	0.61
47	Dig TSAA Poultry	%	1.23
48	Dig Val. Poultry	%	2.10
50	Crude Fat	%	0.9
57	18:2 Linoleic Acid	%	0.54
65	Crude Filber	%	3.4
84	Calcium	%	0.26
85	Phosphorus-Total	%	0.64
86	Phosphorus-Available	%	0.16
88	Sodium	%	0.01
89	Chloride	%	0.04
90	Potassium	%	2.13
91	Magnesium	%	0.30
92	Sulfur	%	0.44
95	Copper	ma/lb	9.23
97	Iron	mg/lb	59.5
98	Manganese	malb	16.9
99	Selenium	mg/lb	0.0454
100	Zinc	mg/lb	25.9
103	Vitamin E	IU/lb	1.0
106	Choline	mg/lb	1,251

Example of Nutritional Characteristics Attributed to Soybean Meal for Use in **Least-Cost Feed Formulation**

• Soybean Meal's Nutritional "Bundle"

Meal's Nutritional "Bundle"

- Multiple nutritional factors:
 - "Complicate" the assessment of meal value BUT
 - Relatively small shifts in multiple characteristics can add up to meaningful changes in value
 - Represents peril or opportunity, depending on whether and how differences are managed

SBM Usage and Value

- <u>SBM must</u> constantly <u>compete</u> for usage with alternate sources of the nutrients it provides
- Usage is dependant upon SBM's value-proposition relative to other ingredients
- The end-user determines market value
 - Different applications have different needs and associated values
 - Value varies with each usage scenario

Crystalline Amino Acid Cascade Swine Feed Illustration

Diet	"A"	"B"	'C"	"D"	"E"
Formulation Type	Com-Soy	"A"+Lys	"B"+Thr	"C" + Met	"D" + Trp
Ingredient					
Com	1392	1489	1510	1591	1639
SBM	492	392	370	285	235
L-Lysine HCL		3.1	3.8	6.5	8
L-Threonine			0.3	1.5	2.2
DL-Methionine				0.8	1.2
L-Tryptophan					0.3
Other	116	115.9	115.9	115.2	114.3
Total	2000	2000	2000	2000	2000
Limiting Dig AA	Lysine	Threonine	TSAA	Tryptophan	Valine

Integrative Nutrition, Inc.

Meal's Value-Proposition

- A products Value-Proposition includes all factors associated with its use
 - For SBM it is a function of:
 - Meal's attributed Nutrient Bundle
 - Nutrient specifications of a given feed
 - Other ingredients offered and their attributed nutrient profiles
 - Cost of meal relative to other ingredients which provide the same nutrients
 - Other factors associated with meal use

Improving SBM Value

"In a competitive setting, a product will improve or diminish"

- The Composition Opportunity
 - Dependent upon the extent to which:
 - Differences in soybean composition exist
 - The economic value associated with compositional differences
 - Pursuit is feasible
 - Market systems
 - Measurement tools
 - Maintenance of inherent value
 - Within the value chain
 - Through processing
 - Requires a comprehensive approach

Nutrient Concentration Considerations

Soybean at 87% DM			Meal Crude Protein		
	<u>Protein</u>	<u>Oil</u>	No Hulls	With Hulls*	
	35.0	18.0	47.9%	47.9%	
	35.0	19.0	48.7%	48.0%	
	35.0	20.0	49.4%	48.0%	
	36.0	18.0	49.3%	48.0%	
	36.0	19.0	50.1%	48.0%	
	36.0	20.0	50.9%	48.0%	
	37.0	18.0	50.7%	48.0%	
	37.0	19.0	51.5%	48.4%	
	37.0	20.0	52.3%	49.1%	

^{*} Hulls limited to that in a bushel. (No "outside" hulls.)

A Integrative Nutrition, Inc.

Optimization of Nutrient Utilization

- Considerations
 - Anti-Nutritional Characteristics
 - Heat labile
 - Heat stable
 - Proper "toasting" to:
 - Adequately de-nature heat labile anti-nutritional factors
 - Some heat is required to remove residual hexane
 - Not over-toast to the extent that proteins become less digestible

No Heat Over Toasted

Integrative Nutrition, Inc.

Improving Soybean Meal's Value Proposition

- Mear-Relevant Changes in Soybean Composition
 - Soybean Genetic Selection
 - From existing commercial lines
 - Creation of "New" soybeans
 - Agronomic practices
- Market System Improvements
- Processor Derived Enhancements
- Precision improvements in feed formulation and manufacture

