A Molecular Tool to Increase Protein Content and Broad Disease Resistance in Soybeans

Ling Li Iowa State University

Soybean Breeders Workshop Feb 24, 2016

Protein and world health

Protein deficiency is a major health problemespecially affects children.

Consumption of proteins from plants have far less environmental impact than consumption of animalderived protein.

Ability to optimize protein productivity in plants could have far-ranging impacts to world health and sustainability.

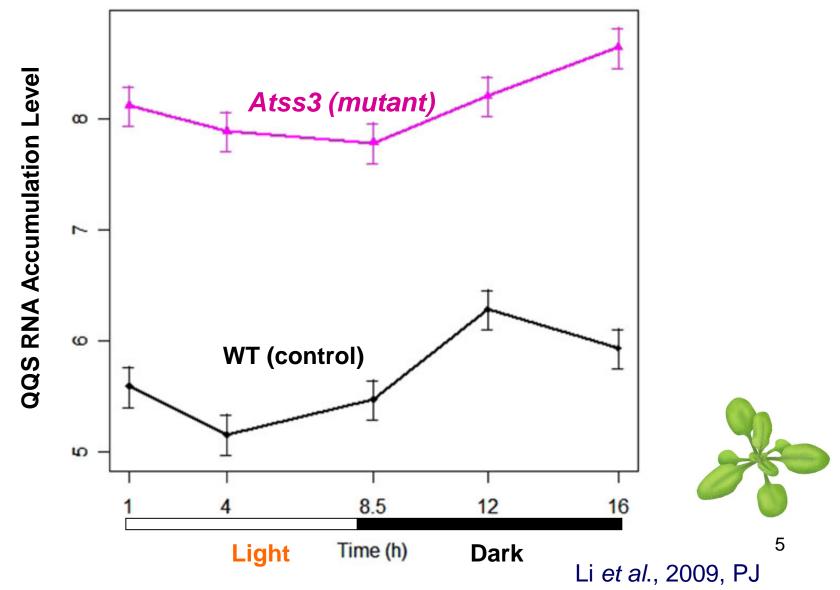
Combating plant diseases is key for sustainable crops

Climate change: plants more vulnerable to infectious disease, threaten crop yield and impact on the price and availability of food.

Less reliance on pesticide: essential to ensure sustainable crops and green environment.

3

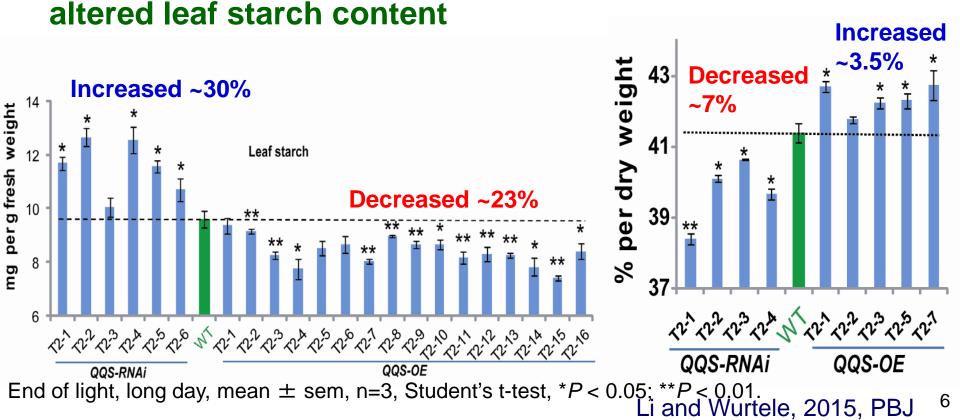
Research

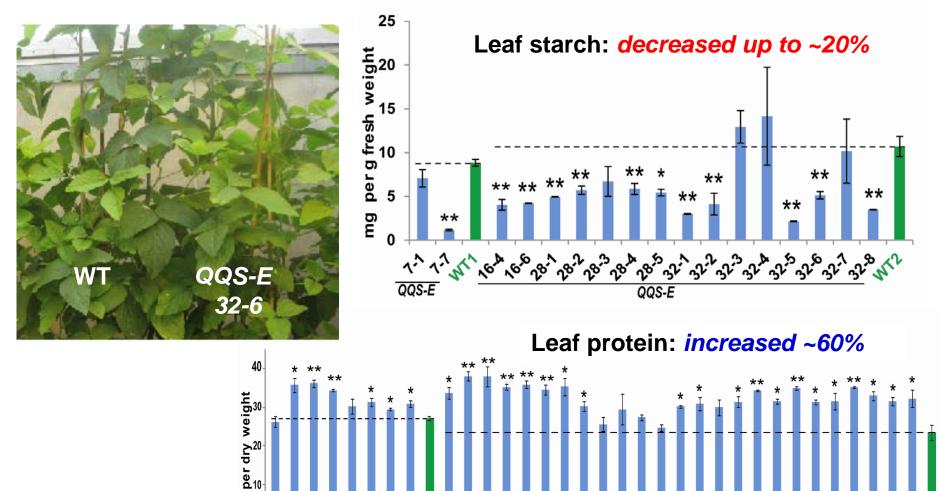

 Identification of QQS as a component to regulate carbon and nitrogen allocation

• A molecular tool to increase protein in soybeans

• Plant genes mediate pathogen/pest resistance

 A molecular tool for broad disease resistance in soybeans

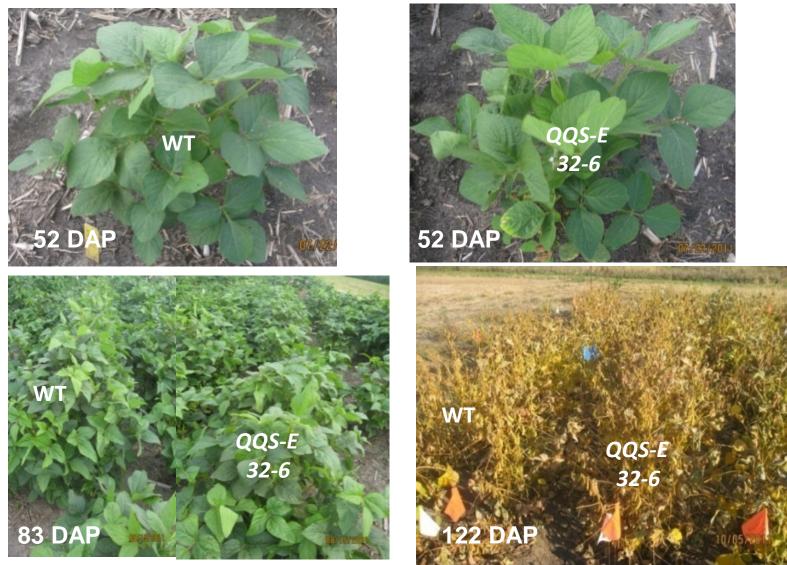

QQS (Qua Quine Starch) is up-regulated in Atss3 (starch synthase 3 knock out)


Plants with altered QQS expression have similar visual phenotype

altered leaf protein

QQS-expressing soybeans have similar visual phenotype to WT but altered composition

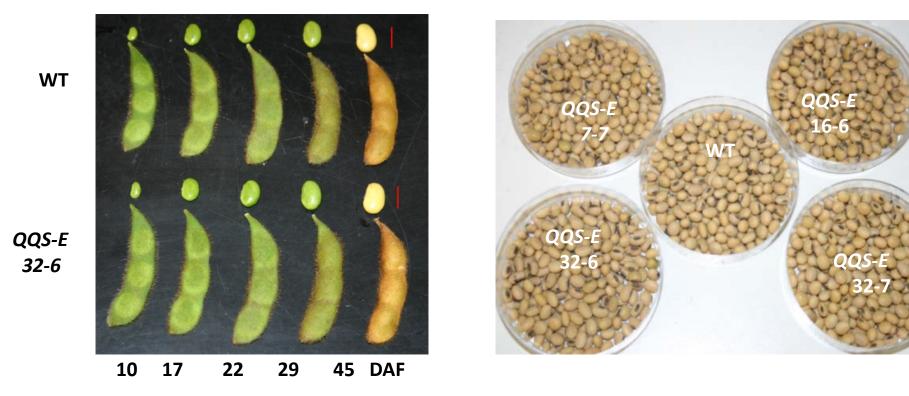
Growth chamber, T1 plants; transformation at ISU PTF Li and Wurtele, 2015, PBJ


16¹

 $\frac{1}{\sqrt{2}}$

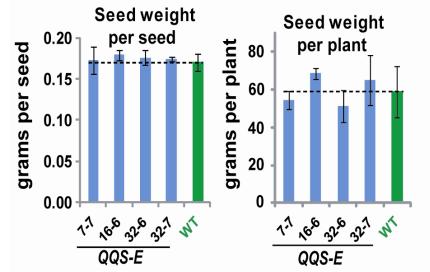
12 12 13 14 15 16 11 18

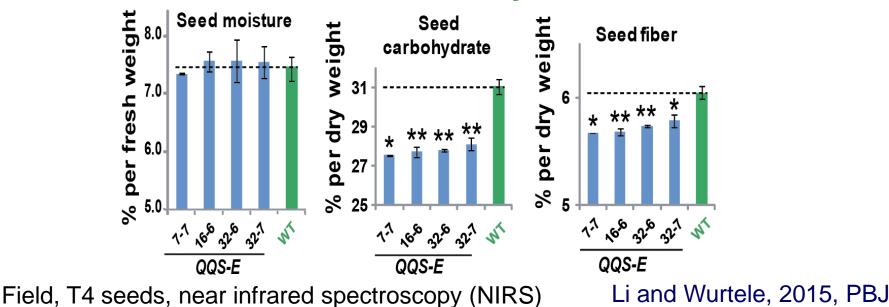
%


QQS-expressing soybeans have similar visual phenotype

Field, T3 plants

Li and Wurtele, 2015, PBJ

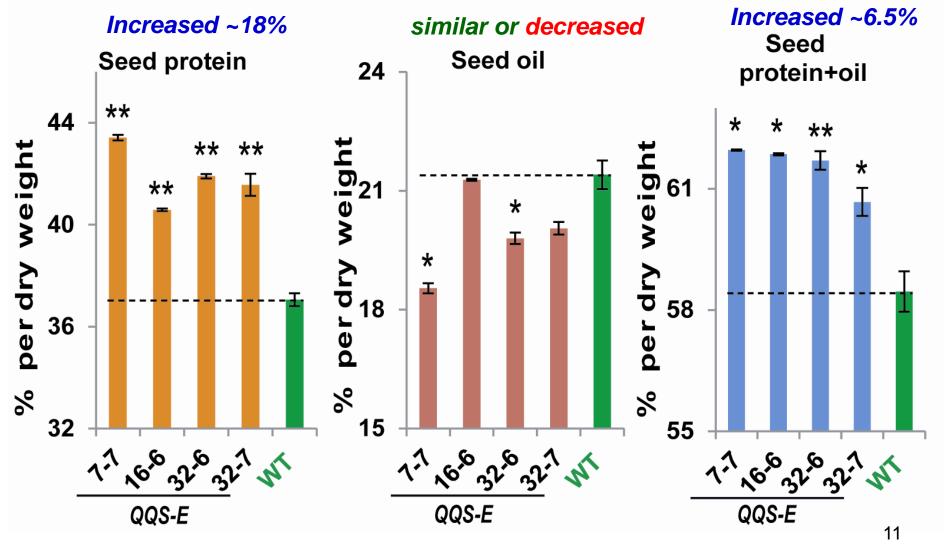

QQS-expressing soybeans have indistinguishable seed development, seed size and shape


⁹ Li and Wurtele, 2015, PBJ

Field, T4 seeds

No obvious effect on seed yield

Decreased seed carbohydrate and fiber



10

Increased seed protein+oil

Field, T4 seeds, destructive chemical analyses

Li and Wurtele, 2015, PBJ

Free Lysine and Arginine are increased in seed

	WT (% per dry weight)	QQS-E mutant ^{1,3} (% per dry weight)	Changes of <i>QQS-E</i> mutant vs WT (% relative to WT) ⁶	P-value of t-test of QQS-E mutant vs WT
Total protein	20.20 ± 0.24	42.25 ± 0.82	8	0.03
Total protein	39.30 ± 0.34	42.25 ± 0.83	0	0.03
Glutamic acid				
(free)	0.071 ± 0.007	0.051 ± 0.004	-27.9	0.02
Lysine (free)	0.043 ± 0.006	0.054 ± 0.002	25.7	0.03
Threonine (free)	0.043 ± 0.012	0.044 ± 0.004	4.2	0.43
Aspartic acid (free)	0.039 ± 0.004	0.051 ± 0.005	31.1	0.03
Arginine (free)	0.039 ± 0.016	0.156 ± 0.062	301.5	0.04

Field, T4 seeds, from 3 transformation events, Essential amino acids

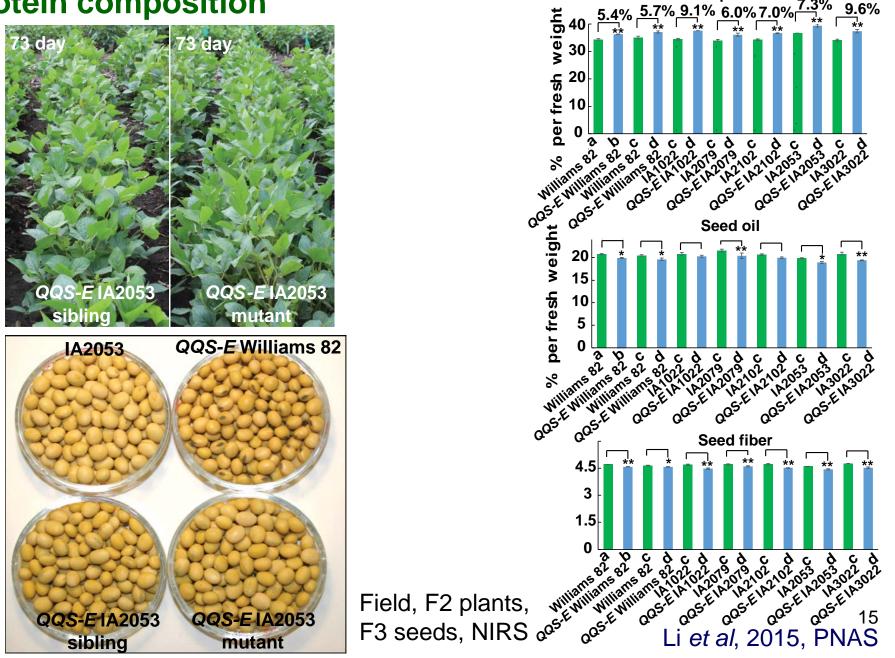
Li and Wurtele, 2015, PBJ

Almost all amino acids from hydrolyzed seed proteins are increased

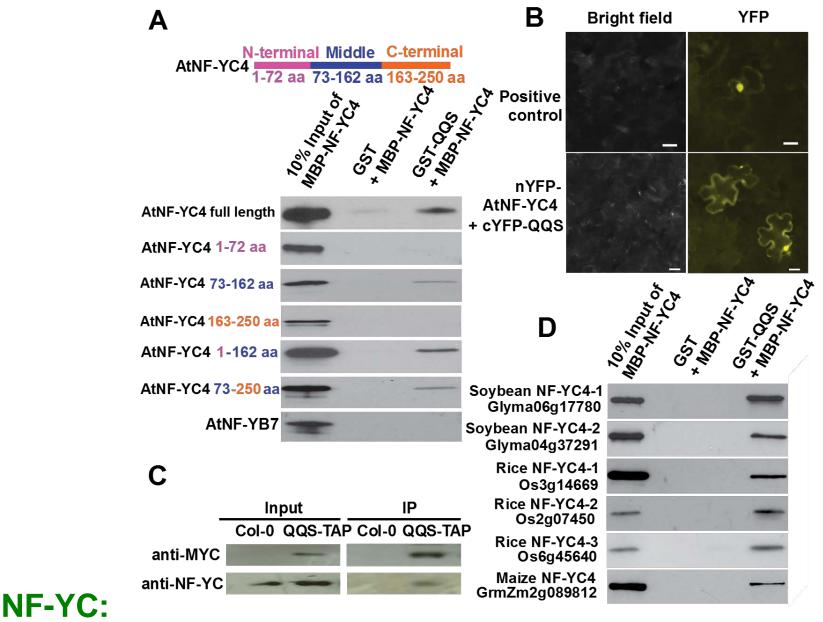
	Williams 82 (% per dry weight)	QQS-E mutant (% per dry weight)		P-value of t-test (<i>QQS-E</i> vs WT)
Total protein ²	39.39 ± 0.21	42.66 ± 0.54	8.3	0.000
Glutamic Acid ⁴	6.80 ± 0.07	7.35 ± 0.08	8.1	0.000
Aspartic Acid	4.39 ± 0.03	4.75 ± 0.06	8.3	0.000
Leucine	3.06 ± 0.03	3.25 ± 0.03	6.4	0.000
Arginine	2.82 ± 0.02	3.19 ± 0.08	12.9	0.001
Lysine	2.56 ± 0.02	2.75 ± 0.03	7.1	0.000
Phenylalanine	1.98 ± 0.02	2.08 ± 0.03	5.4	0.004
Valine	1.97 ± 0.03	2.10 ± 0.03	6.4	0.008
Isoleucine	1.88 ± 0.02	1.98 ± 0.03	5.7	0.008
Proline	1.85 ± 0.02	2.02 ± 0.02	9.3	0.000
Serine	1.78 ± 0.07	1.95 ± 0.04	9.2	0.044
Alanine	1.70 ± 0.02	1.81 ± 0.02	6.8	0.000
Glycine	1.68 ± 0.01	1.80 ± 0.02	7.2	0.000
Threonine	1.50 ± 0.02	1.61 ± 0.02	7.6	0.001
Tyrosine	1.47 ± 0.02	1.53 ± 0.02	4.4	0.027
Histidine	1.03 ± 0.01	1.12 ± 0.01	8.2	0.000
Methionine	0.55 ± 0.00	0.58 ± 0.01	6.0	0.000
Cysteine	0.54 ± 0.01	0.58 ± 0.01	7.6	0.004
Tryptophan	0.46 ± 0.05	0.51 ± 0.01	10.5	0.179
Hydroxyproline	0.0638 ± 0.003	0.0643 ± 0.005	0.7	0.471
Taurine	0.057 ± 0.004	0.055 ± 0.004	-4.8	0.329
Ornithine	0.026 ± 0.003	0.028 ± 0.002	9.0	0.244
Hydroxylysine	0.023 ± 0.004	0.028 ± 0.003	18.9	0.206

13

Field, T4 seeds, 3 transformation events, Essential amino acids Li and Wurtele, 2015, PBJ

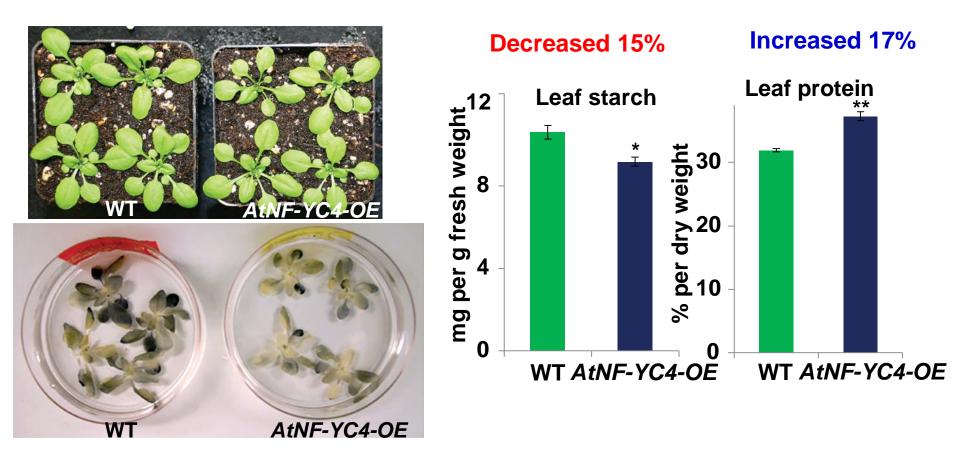

Does QQS increase seed protein in cultivars with different protein levels?

				ed	Protoin		Chlores	Dolmiti	Stoori	Palmiti		Linoloi	Linoloni	
				ight	Protein		Chlorosi						Linoleni	
Entry	rield	Height			(NIRS)	Oil	S	С	С	Stearic	Oleic	С	С	Character
	bu/a	inches	mg/s d	sds/ lb	%	%	score	%	%	%	%	%	%	
														SCN
														resistant,
IA1022*	63.9	34	143	3180	31.5	20.5	3.5	10.8	4.1	14.9	23.4	53.9	7.8	yellow hilum
IA2079*	59.9	38	144	3140	34.2	18.4	2.9	10.4	4.9	15.2	24.9	58.7	1.2	1% linolenic
IA2102*	69.4	40	144	3140	34.3	18.5	2.6	10.5	4.6	15.1	21.4	55.0	8.5	Commodity, yellow hilum
IA2053*	54.4	40	195	2330	37.3	17.8	3.6				ow p	roteii	n	Large seed & high protein
IA3022*	52.7	38	204	2230	38.5	17.3	2.8		Med	s ium p	rotei	n		Large seed & high protein
Williams 82					34	18.5								
							-	Hid	ah pr	otein				14


High protein

Data from Dr.Fehr, field, 2011

QQS increases soybean seed protein regardless of initial
protein compositionSeed protein
Seed protein
£ 40 5.4% 5.7% 9.1% 6.0% 7.0% 7.3%


What does QQS interact with?

widely conserved transcription factor

Li *et al*, 2015, PNAS

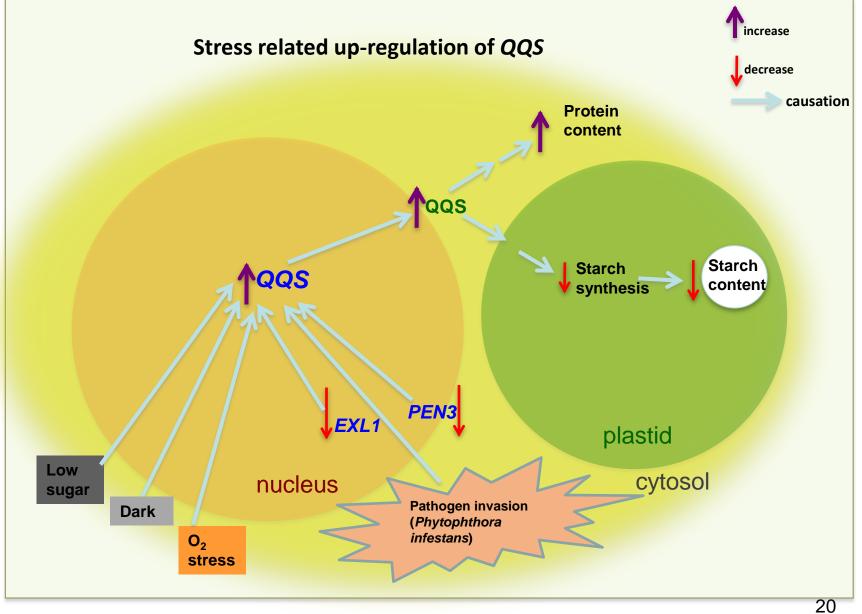
Overexpressing *NF-YC4* in Arabidopsis decreases leaf starch; increases leaf protein

Growth chamber, T2 plants, from 3 transformation events

Li et al, 2015, PNAS

Soybean *NF-YC4-OE* seeds (Williams 82) have increased seed protein and protein+oil, decreased seed fibers and similar yield per plant

Seed protein: Increased 6~12% Seed oil: Similar or decreased Seed Protein+oil: Increased 5~7%


Seed fiber: Decreased 3.4-5.6% Seed weight per plant: Similar

Non-transgenic approach to increase the soybean protein content

Soybean NF-YC4 expression is up-regulated when some promoter region is deleted.

Targeted mutagenesis, via TAL effector nucleases(TALEN) or CRISPER/Cas9 technologies, toincrease soybean protein.

QQS may act to mediate cross talk between primary metabolism and environmental perturbations

Arendsee et al., 2014, TIPS

Both foci number and focus size of viral infection are decreased in transgenic Arabidopsis mutants overexpressing genes in NFY-related network

Foci number:Foci size:Decreased up to 88% in OE mutantsDecreased up to 51% in OE mutants

Turnip mosaic virus carrying GFP: TuMV-GFP, 120 hr after infection, growth chamber

Drs. Wenguang Zheng, 21 Mingsheng Qi, Steve Whitham Bacterial growth in planta is similarly decreased in transgenic soybeans (Williams 82) of GmNFY-R-G2-OF

Soybean Cyst nematode female count numbers were decreased in transgenic soybeans of GmNFY-R-G2-OE (Williams 82)

Aphid numbers were decreased soybean mutants of GmNFY-R-G2-OE (Williams 82)

Transgenic and non-transgenic approach to reduce soybean susceptibility to pathogens and pests

Molecular tool of both Transgenic and Non-transgenic approaches

- Normal growth and development,
- Increase soybean seed protein,
- Reduce soybean susceptibility to pathogens and pests,
- Increase sustainability.

Acknowledgements

Wenguang Zhen Zhu, Xuchu Wan	Alan Myers Qinglei Gan							
Alex Schultz, Ruo Tent Sow, Ana Boo	Bing Yang							
Steve Whitham Mingsheng Qi			acintosh ca Hohenstein Basil Nikolau					
Greg Tylka David	l Soh		Kan Wang	Dan Nettleton				
Walter Fehr, Dan	ny Singł	า	Diane Luth ISU PTF	Xuefeng Zhao				
Yanhai Yin Huaxun Ye, Buyun	Tang		Eve Syrkin Wurtele Zeb Arendsee, Manhoi Hur					
Martin Spalding			Doul Soott		BCLAmorioso			
Yingjun Wang, Da	in Stessm	an	Paul ScottBGI Americas					
United Soybean Board, Iowa Soybean Association National Science Foundation: MCB ISU Research Foundation Center for Metabolic Biology								