What's New at SoyBase

Feb. 2014

David Grant
Rex Nelson
Kevin Feeley
Robert Baker
Nathan Weeks
Steven Cannon

Improved QTL Names

Branching Branching BSR BSR

Cnpy ht Canopy height Cnpy wdth Canopy width

CID Carbon isotope discrimination CWP Cellwall polysacch composition

CES Chlorimuron sensitivity
CCW Common cutworm
CEW Corn earworm

Lflt chlorophyll
Lf lgth
Specific lflt N
Leaflet chlorophyll
Leaflet length
Leaflet N, specific

Leaflet P
Lflt shape Leaflet shape

TRG(DW) Leaflet trigonelline, dry
TRG(FW) Leaflet trigonelline, fresh

Lf wdth Leaflet width

NitR7 Seed N at R7 Sd num Seed number Oil Seed oil

Sd wt/plant Seed weight per plant

Sd yld Seed yield

Yld/Ht Seed yield/Plant height Yld/SW Seed yield/Seed weight

R5 Seed, beginning

SoyBase and the Soybean Breeder's Toolbox

Integrating Genetics and Molecular Biology for Soybean Researchers

SoyBase

Analysis Tools

Resources

SoySeq

Data Tools SoyCyc Legume Research Programs Soybean Breeders Workshop Download Data Submit Your Data Contact Us

Community Resources and Communications

Tutorials

SoyBase Video Tutorials

- · SoyBase Genetic Map Tutorials
- · SoyBase Sequence Map Tutorials
- SoyBase Database Searching Tutorials

YouTube Videos

- · Soybean Growth and Development
- · Soybean Diseases
- · Soybean Pests
- Methods and Protocols

Making Crosses with Soybean Harvesting Research Plots

YouTube and MP4 Tutorals

Table of Contents

Clicking on the table of contents below will take you to the YouTube and MP4 links. Click the title to view a YouTube video or click the "MP4" to download an MP4 version of the YouTube video. Mousing over the title will produce a thumbnail of the video and an expanded description.

SoyBase Tutorials

- SovBase Genetic Map Tutorials
- SoyBase Sequence Map Tutorials
- SoyBase Database Searching Tutorials

· YouTube Videos of Note

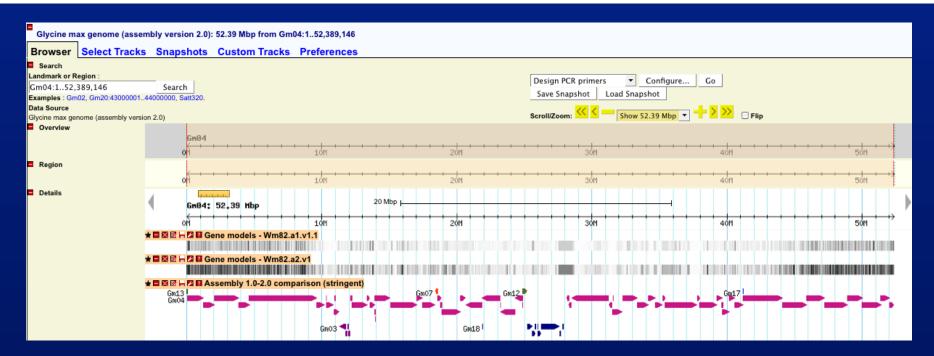
- Soybean Growth and Development Videos
- Soybean Disease Videos
- Soybean Pest Videos
- Methods and Protocol Videos

SoyBase Genetic Map Tutorials

- How to zoom into a region on the genetic map (3:10, 118 Mb MP4)
- How to flip genetic maps to resolve corresponding marker positions (1:44, 57 Mb MP4)
- Turning QTL classes off/on
- (3:08, 78 Mb MP4)
- Removing and adding genetic maps (4:27, 115 Mb MP4)
- How to quickly bring up a genetic or sequence map at SoyBase (1:18, 28 Mb MP4)
- How do I find markers on a genetic map that are not visible (2:00, 57 Mb MP4)
- How do I compare the genetic marker order to the sequence marker order
 (3:45, 113 Mb MP4)

Sequence Map Tutorials

- How to move tracks in the SoyBase sequence viewer (0:56, 31 Mb MP4)
- How to find information on tracks in the SoyBase sequence viewer (2:01, 35 Mb MP4)
- Modifying tracks on the SoyBase sequence viewer (1:12, 41 Mb MP4)
- Zooming into a region on the SoyBase sequence map (2:04, 44 Mb MP4)
- How to visualize the approximate genetic position of a gene call on the genetic map (2:19, 62 Mb MP4)


SoyBase Searching Tutorials

- How to do a quick BLAST against the soybean genome sequence (1:45, 46 Mb MP4)
- Advanced BLAST analysis at SoyBase (4:07, 95 Mb MP4)
- How to perform a quick search of SoyBase (3:17, 79 Mb MP4)
- How to perform a SoyCyc quick search (2:01, 44 Mb MP4)
- How to quickly get a list of all loci at SoyBase (2:10, 80 Mb MP4)
- How do I get a list of all QTL in SoyBase (3:08, 79 Mb MP4)
- How to search the Fast Neutron Mutant collection using a trait value (1:51, 44 Mb MP4)
- Explanation of a Fast Neutron search report (4:07, 120 Mb MP4)

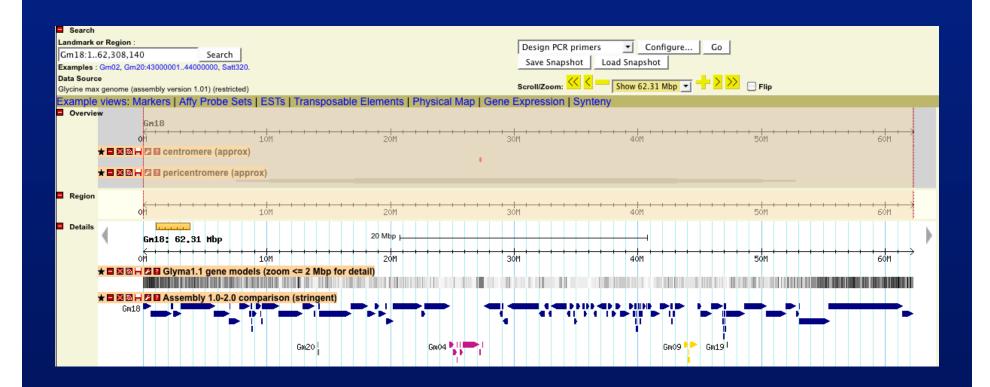
New Wm82 genome assembly from JGI

- corrects known problems with the v1 assembly
- incorporates additional transcript data resulting in improved gene predictions
- revised gene model and annotation nomenclature

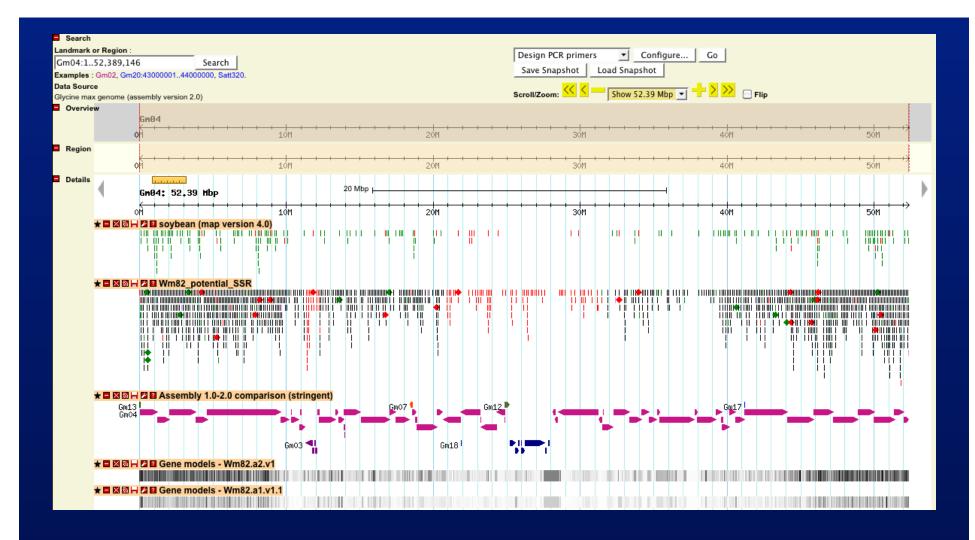
locus: Glyma.01g000100

transcript: Glyma.01g000100.1

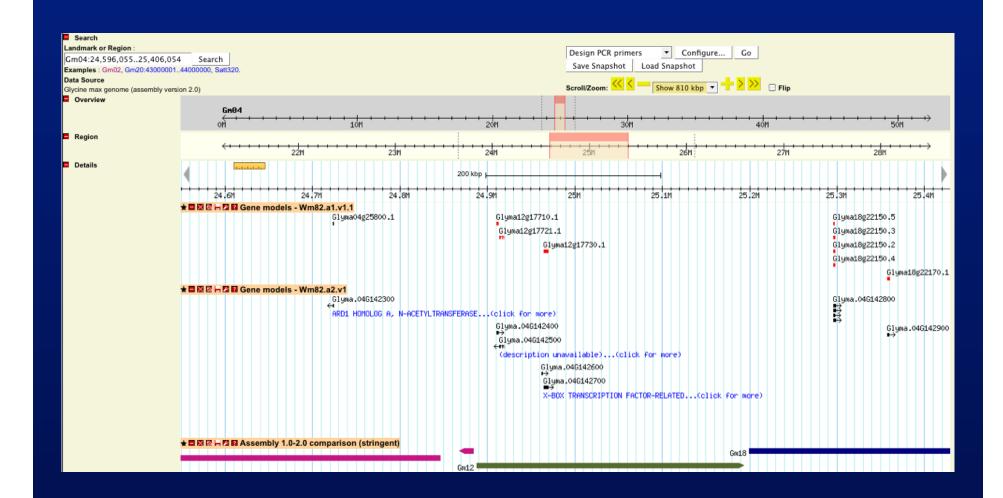
for annotation version Wm82.a2.v1


locus ID: Glyma.01g000100.Wm82.a2.v1

transcript ID: Glyma.01g000100.1.Wm82.a2.v1

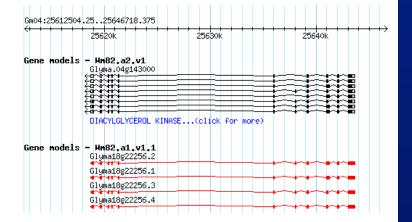

The current sequence browser now has a track showing synteny between the v1 and v2 assemblies.

That the v1 and v2 synteny tracks are reciprocal for shared regions.


Wm82.a1.v1.1 gene models and markers mapped onto new assembly when possible.

Markers and gene models with different chromosomal locations or DNA strand between the two assemblies are indicated in red.

Report for Sequence Feature Glyma.04g143000


Feature Type: gene_model

Chromosome: Gm04 Start: 25618725 stop: 25643608

Source: JGI

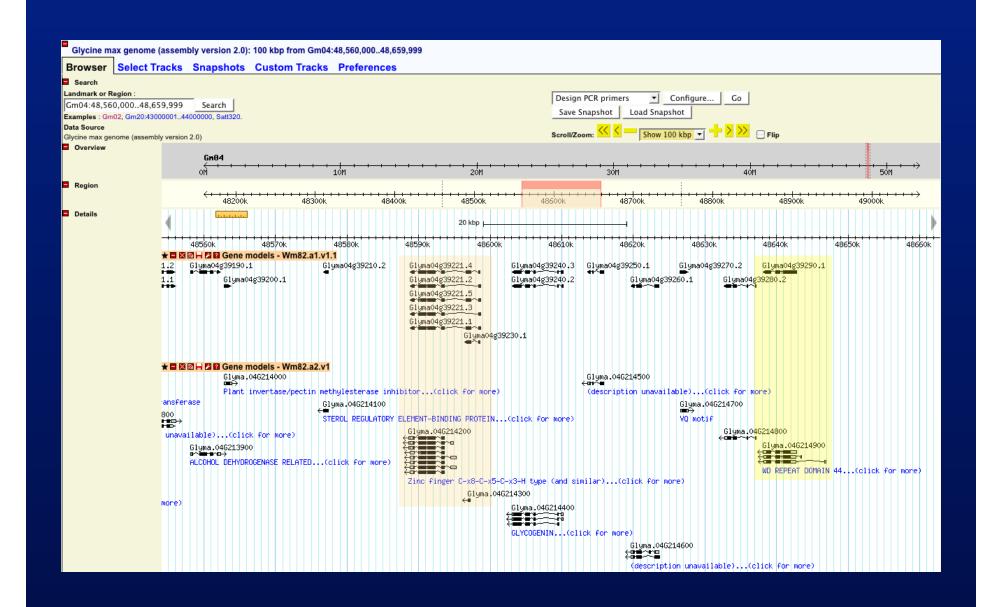
Version: Glyma2.0

High confidence: yes

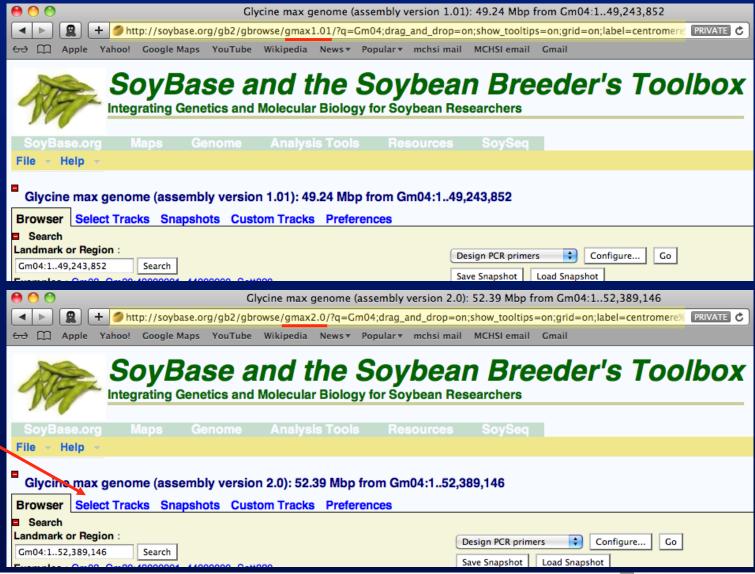
A previous version of this gene model can be found here: (See Previous Version)

Annotations for Glyma.04g143000

Database ID	Annotation Type	Annotation Description	Annotation Source	Match Score	Evidence Code
AT2G18730.1	AT	diacylglycerol kinase 3	JGI	N/A	IEA
AT4G30340.1	AT	diacylglycerol kinase 7	JGI	N/A	IEA
AT5G57690.1	AT	diacylglycerol kinase 4	JGI	N/A	IEA
GO:0004143	GO	diacylglycerol kinase activity	JGI	N/A	IEA
GO:0007205	GO	protein kinase C-activating G-protein coupled receptor signaling pathway	JGI	N/A	IEA
KOG1169	KOG	Diacylglycerol kinase	JGI	N/A	IEA
PTHR11255	Panther	DIACYLGLYCEROL KINASE	JGI	N/A	IEA
PTHR11255:SF32	Panther	DIACYLGLYCEROL KINASE BETA	JGI	N/A	IEA
PF00609	PFAM	Diacylglycerol kinase accessory domain	JGI	N/A	IEA
PF00781	PFAM	Diacylglycerol kinase catalytic domain	JGI	N/A	IEA


Gene model name correspondences to Glyma.04g143000 Gene Call Version Glyma2.0

Corresponding Name	Annotation Version	Evidence	Comments
Glyma18g22256	Glyma 1.1	IGC	As supplied by JGI



Switching Between v1 and v2 Genome Browsers

SoyBase and the Soybean Breeder's Toolbox

Integrating Genetics and Molecular Biology for Soybean Researchers

SoyBase Maps Genome Analysis Tools Resources SoySe

About the Sequence Map SoyBase Browser Transposable Elements Soybean at Phytozome (JGI) 🚰 PlantGDB Browser 🗗 Download Data

SoyBase Soybean Sequence Map Resources

SoyBase browser

Choose a Chromosome

Chromosome

Number 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Linkage D1a D1b N C1 A1 C2 M A2 K O B1 H F B2 E J D2 G L I Group

View the JGI Gma1.01 WGS soybean genomic sequence, as pseudomolecules, integrating features from the soybean composite genetic and physical maps with the genomic sequence. Links from GBrowse features (BACs, markers) to locations in the SoyBase genetic and physical maps are available from a contextual menu. The preliminary 7x assembly is still available here.

View or download a list of markers or other sequence map features by chromosomes here.

Download gene call sequences from the Williams 82 genomic sequence.

Search for Sequence Features and Annotations

SoyBase Search

Perform searches of our entire data set.

See haplotype data for 19,652 cultivars analyzed with the SoySNP50K chip.

View or download a list of genetic markers or other features by linkage group.

SoySNP50K iSelect BeadChip

An Illumina Infinium BeadChip containing over 50,000 SNPs from soybean (Glycine max L. Merr.) has been developed (Song et al. 2013). A total of 498,921,777 reads 35-45 bp in length were obtained from DNA sequence analysis of reduced representation libraries from several soybean accessions which included six cultivated and two wild soybean (G. soja Sieb. et Zucc.) genotypes. These reads were mapped to the soybean whole genome sequence and 209,903 SNPs were identified. After applying several filters, a total of 146,161 SNPs were determined to be candidates for Illumina Infinium II BeadChip design. To equalize the distance between selected SNPs, increase assay success rate, and minimize the number of SNPs with low minor allele frequency, an iteration algorithm based on a selection index was developed and used to select 60,800 SNPs for Infinium BeadChip design. Of the 60,800 SNPs, 50,701 were targeted to euchromatic regions and 10,000 to heterochromatic regions of the 20 soybean chromosomes. In addition, 99 SNPs were targeted to unanchored sequence scaffolds. Of the 60,800 SNPs, a total of 52,041 passed Illumina's manufacturing phase to produce the SoySNP50K iSelect BeadChip. Validation of the SoySNP50K chip with 96 landrace genotypes, 96 elite cultivars and 96 wild soybean accessions showed that 47,337 SNPs were polymorphic and generated successful SNP allele calls. In addition, 40,841 of the 47,337 SNPs (86%) had minor allele frequencies >10% among the landraces, elite cultivars and the wild soybean accessions.

Search SoyBase for a specific SoySNP50K SNP

|--|--|

Examples: ss715578909 or BARC_1.01_Gm01_29091115_A_G

Note: Searches covering the original BARC SNPs can be done on this page.

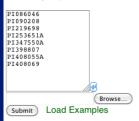
View SoySNP50K SNPs in SoyBase Genome Browser

ĺ	- Select a Chromosome -	Go
ι	- Sciect a Cilioniosonic	(00

Download SNP Data

The SoySNP50K iSelect BeadChip has been used to genotype the USDA Soybean Germplasm Collection (Song et al. in preparation) and the data generously provided by the authors before publication. The complete data set for 19,652 G. max and G. soja accessions genotyped with 52,041 SNPs is available here (approx. 170 Mb compressed with GZIP).

SoySNP50K haplotypes for a user-selected subset of the genotyped cultivars can be downloaded from this page.



Download SoySNP50K haplotypes for a subset of the cultivars

Paste a list of cultivar names, one per line, into the box below or use the Browse button to navigate to a plain text file on your computer that contains a list of cultivar names.

The submit button will initiate a download to your computer of the SoySNP50K haplotypes for the cultivars you provide.

Or use our shopping cart tool to select cultivars of interest from the complete list of cultivars haplotyped by Song et al.

Readme Text:

(Included in download)

Including this READ ME there are four files returned for a cultivar-haplotype search. All data are in plain text files with tab delimiters between columns.

NOTE

We have observed that on some computers opening these files directly in Excel results in each line being placed in a single cell rather than 1 cell per tab-separated column. This can be solved by opening the file in Word or another text editor and using copy/paste to put the data into Excel.

Downloaded Data Files:

cultivar snps

This is a 2 column tab-delimitted file, 1 line per cultivar.

Cultivar Name Cultivar Haplotype

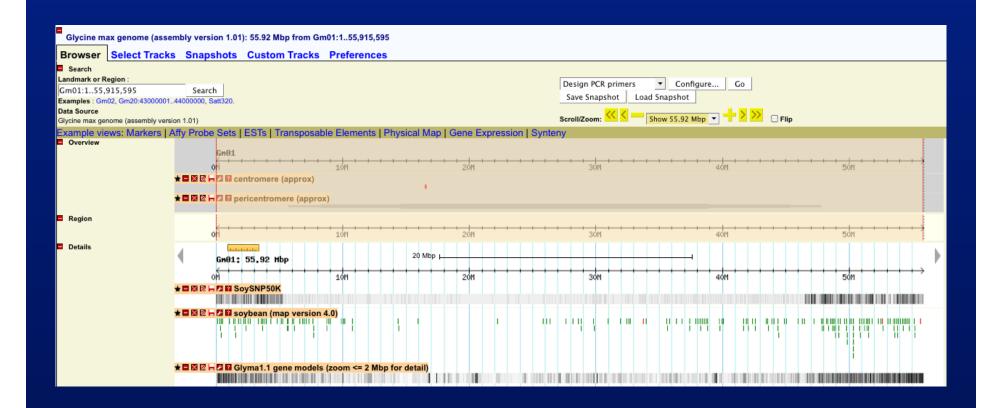
PI442007B TAATTAACTAAAGTAGTAAATAACCCAGGA......

snp id and position

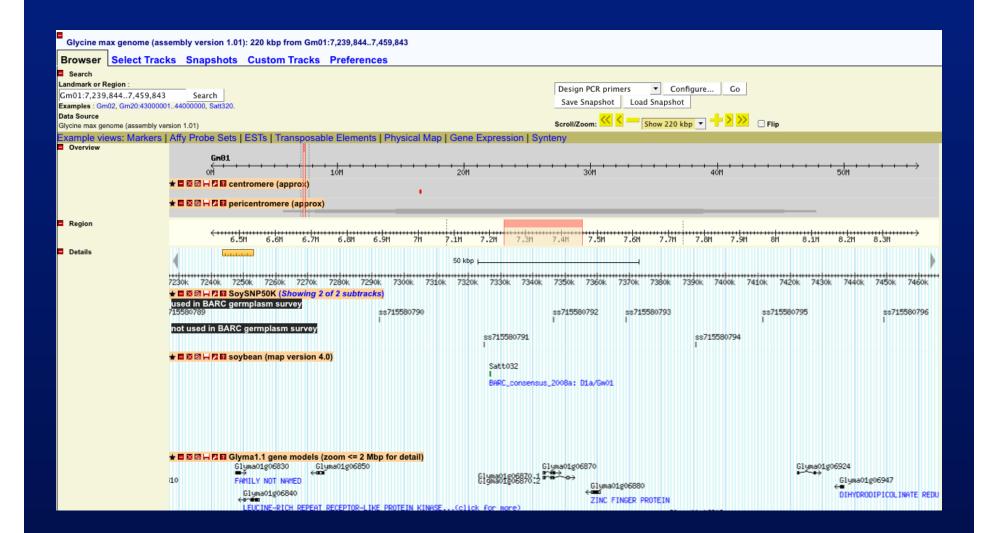
This file contains what amounts to the column header information for 'cultivar_snps'. It is provided as a separate file so that the haplotype data in 'cultivar_snps' doesn't need to have tabs between each SNP allele value.

SNP Name	ss715578401	ss715578402	ss715578403	ss715578404	ss715578405
Chromosome	Gm01	Gm01	Gm01	Gm01	Gm01
Position	10015701	10052330	1006696	10074809	1009248

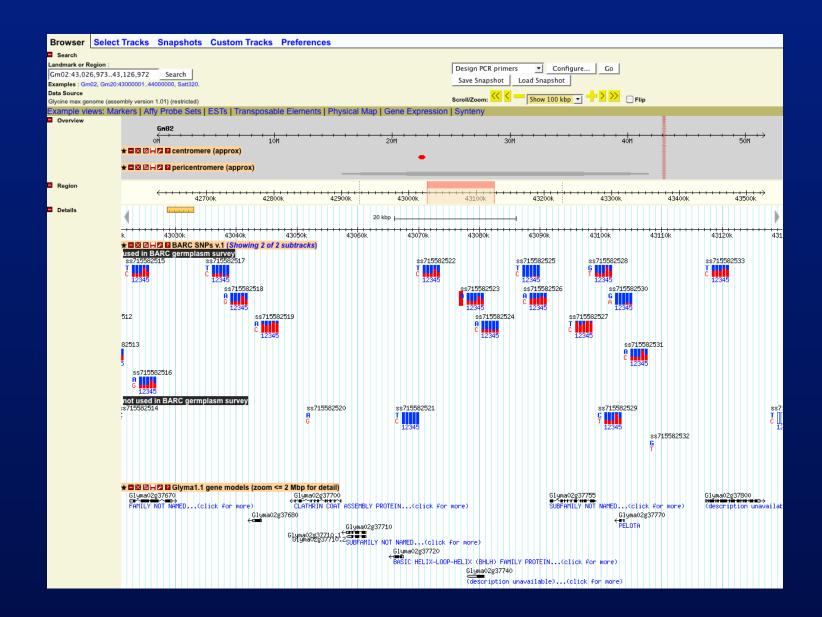
snp id position and value

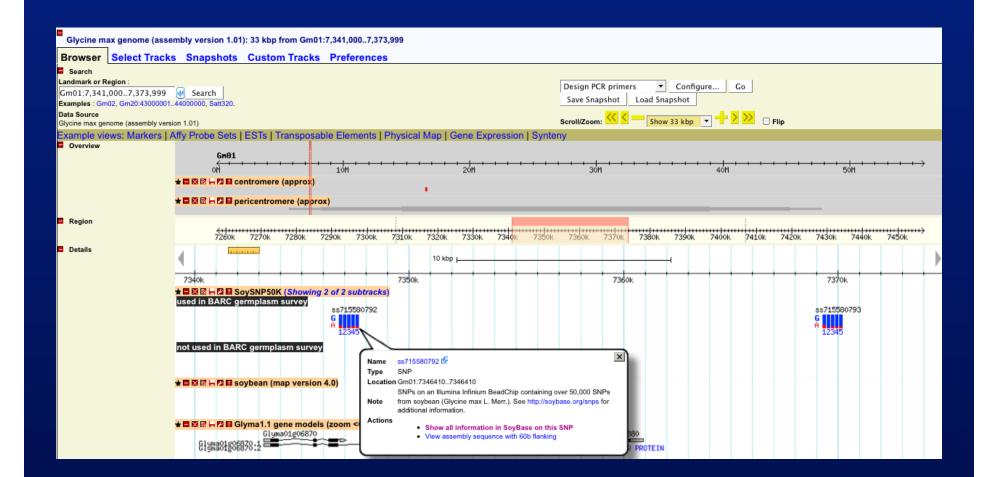

This is a more human readable version that includes both the haplotype data and the SNP descriptions. The order of SNP lines is the same as the order of SNP allele values in 'cultivar_snps'.

SNP ID	Chromosome	Position	PI442007B	PI365426	PI587703A	PI228064
ss715578401	Gm01	10015701	Α	Α	Α	Α
ss715578402	Gm01	10052330	С	С	С	С



SoySNP50K data currently only on genome assembly Wm82.a1.v1.1





Report for ss715578909

Locus type: SNP

Organism: Glycine max dbSNP name: ss715578909

Altername name: BARC_1.01_Gm01_29091115_A_G

Genomic sequence information

Chromosome: Gm01 **SNP position: 29091115** SNP alleles: A/G Location in gene: intergenic

Genomic context: Start: 29091055

End: 29091175

Sequence: [A/G]GAGGAAGAGAGGGTGTACAAACATAACATATCTTAAATGTAAAACATGGACCTAA

Select All

Genome Assembly Version: Glyma1.0

Allele frequency

Population	Minor Allele	Minor Allele Frequency		
96 G. max landraces	G	0.427		
96 G. max elite cultivars	G	0.431		
Gmax192 G. max landrace + elite	G	0.429		
96 G. soja accessions	G	0.219		
ALL288 G. max landrace + elite cultivars + G. soja	G	0.359		

Allele distribution

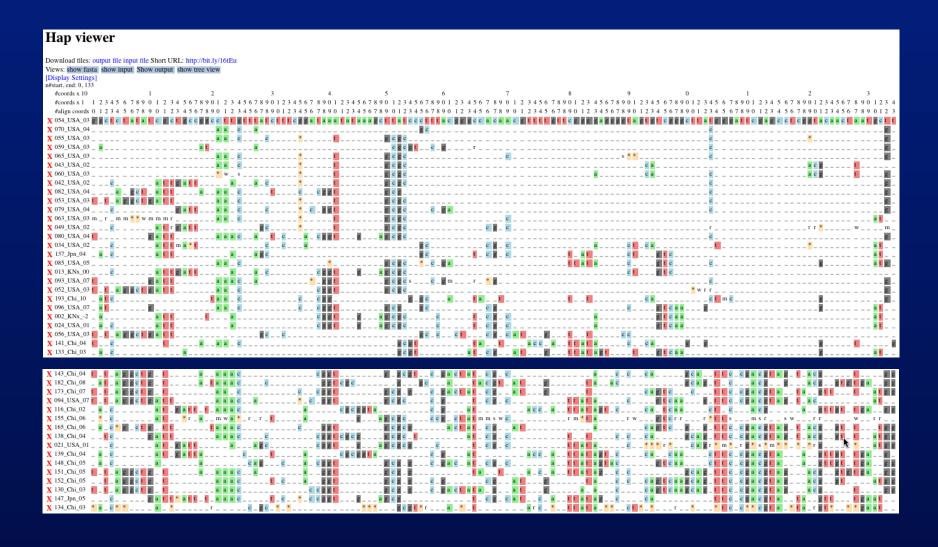
Accession Allele Wm82 Α

The allelic composition for the 19,652 cultivars and accessions used in the BARC Germplasm Survey can be downloaded here.

Data source

Data provided by: Cregan, Perry and Song, Qijian

Reference: Song et al. 2013a


Assay Information: Illumina Infinium BeadChip

Conceptual Haplotype Viewer Using A Condensed Graphical Form

Conceptual Report for a GWAS Experiment

GWAS-1 Proten 1

Experiment Name: GWAS Experiment 1
Manhattan plot view: View Manhattan Plot

Trait name: Protein content

SNPs involved in protein content

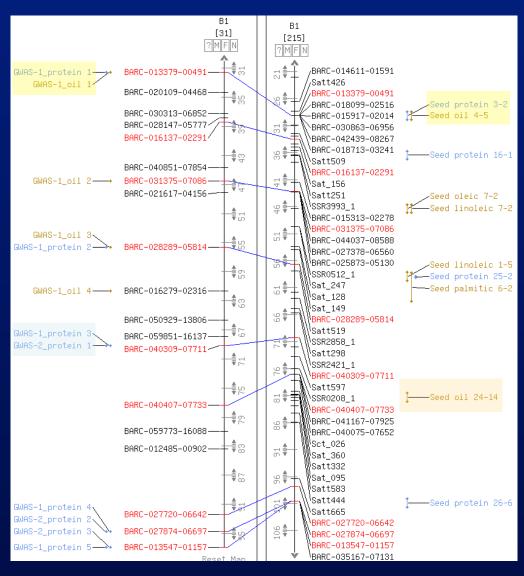
GWAS ID	SNP ID	Chromosome	Position	Linkage Grp.	Position	Score
GWAS-1_protein 1	BARC-013379-00491	Bn03	31593562	A1	28.5	6.5
GWAS-1_protein 2	BARC-028289-05814	Bn03	45160253	A1	58.9	6.8
GWAS-1_protein 3	BARC-040309-07711	Bn03	48593762	A1	70.2	6.1
GWAS-1_protein 4	BARC-027874-06697	Bn03	54628741	A1	100.9	6.9
GWAS-1_protein 5	BARC-013547-01157	Bn03	56593562	A1	101.1	6.9

References for the Analysis

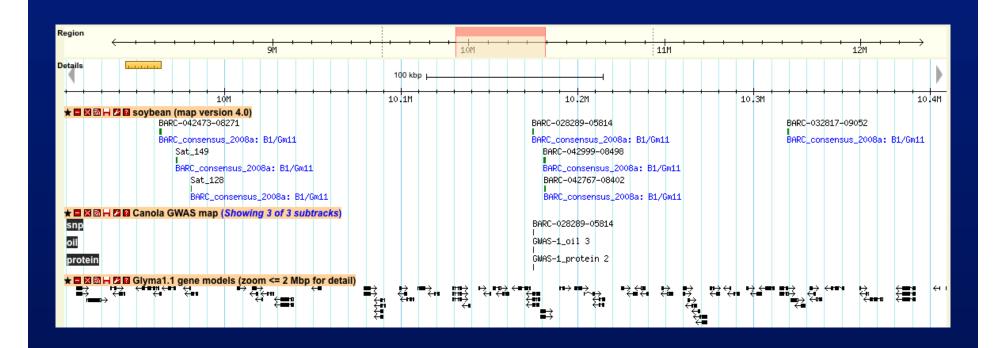
Gore et al. 2014 Genome wide association study of seed oil in Brassica napus Euphyt. 2014, 152(1):67-73

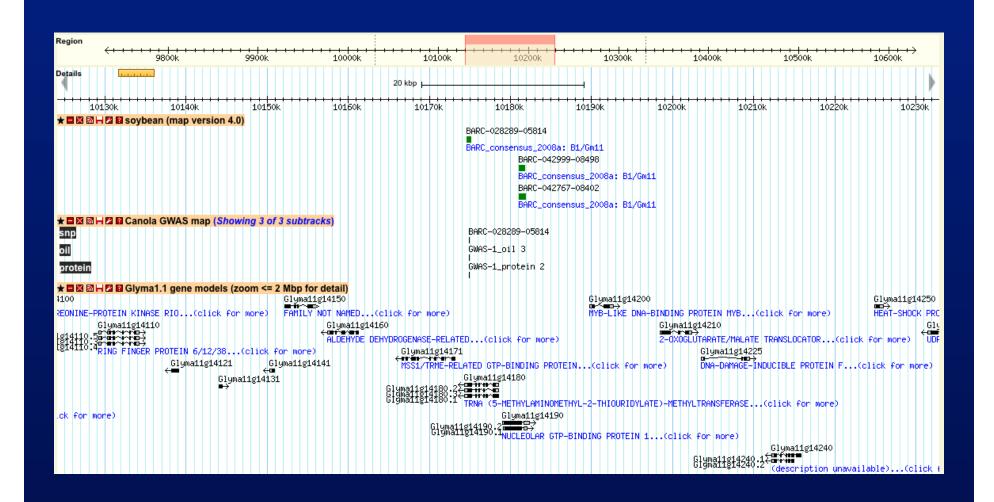
Comments about the interval

Authors identified Brana03g000200 and Brana03g000300 as candidate genes linked to GWAS-1_protein 4 and GWAS-1_protein 5


Seed protein determined by NIR

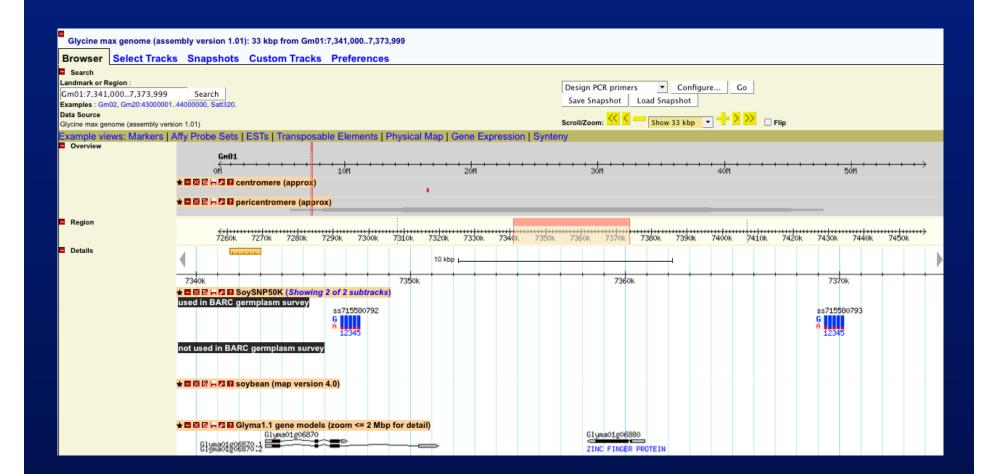
Trait Associated Snps Shown Relative To The Genetic Map





Trait Associated Snps Shown Relative To The Genome Sequence

Questions?


http://soybase.org

