Next Generation Crop Improvement

Peter L. Morrell Agronomy & Plant Genetics - Minnesota

REVIEWS

Crop genomics: advances and applications

Peter L. Morrell¹, Edward S. Buckler² and Jeffrey Ross-Ibarra³

Morrell et al. 2012

Soybean Genomics Strategic Plan

- Goal I: Improve Utility of Genome Sequence
 - Improve bioinformatics resources practical applications
- Goal 2:Translational Genomics Optimize Breeding Efficiency

Boerma et al. 2011

Topics

- Next generation populations
- Selection against deleterious mutations
- Applications of genomewide SNP data

Observational Astronomy

Information about places we won't ever visit
The visible portion of the electromagnetic spectrum is only a fraction of what exists
DNA resequencing data latent with information about the past

DNA Resequencing

- Most direct measure of genetic diversity
- Can assay all heritable variation
- Can now be collected very rapidly

Genome Size

Short Read Mapping

Morrell et al. 2012

Molecular Population Genetics

Derived Site Frequency Spectrum (SFS) GGGATGGCC....GGCACGGGC C. A. G. 4 4 1 1 2 4

Derived SFS

Buckler et al. 2009

Next Generation Populations

- Where are mutations that control quantitative variation?
 - How large an effect do they have?
- What is their frequency in the population?

QTL Mapping

- Quantitative Trait Locus mapping
- Progeny segregating for portions of the parental genomes
- Statistical test of association between genotype and phenotype

Association Mapping

- Statistical association between SNPs and phenotype
- Generally assumes common disease (trait) common variant
- Fails under selection mutation balance
 - Constant flux of rare causative mutations

Phenotype

Assumptions

Future Resources - Next Generation

- Reference genome sequences and fully resequence genomes for all major crops
- 10⁵ 10⁶ SNPs will be available for inexpensive genotyping in most crops

Multiparent QTL

- Multiple parental lines; multiple generations
- Similar to barley composite crosses from 1920's
 - Arabidopsis MAGIC populations
 - Drosophila synthetic

Macdonald & Long 2007

Mating Designs

Rockman & Kruglyak 2008

Multiparent Population

Macdonald & Long 2007

Multiparent QTL

Macdonald & Long 2007

Allelic Effects

Macdonald & Long 2007

Deleterious Mutations

- An mutation that reduces fitness or viability (yield)
 - Premature stop codons, insertions/ deletions, splice site variants
 - Amino acid changes
 - Cis-acting regulatory factors

• 100s to 1000s per genome in humans

Deleterious Mutations

Rice. . . ABrachypodium. . . ASorghum. . . AA. . . AA. . . A

Maize

- . . . AAC CAC CTT AAC CAC CTC . . .
 - . AACCACCIC. . .
- Asn His Leu
- ... AACGATCTC...

Asn Asp Leu

Morrell et al. 2012

Deleterious vs. Lethal

- Lethal mutations quickly purged upon inbreeding
- Deleterious mutations modest frequency
 - Can reaching higher frequencies due to linkage drag or 'allelic surfing'
 - Harbored in genomic regions with low recombination rate

Recombination Rate

Gore et al. 2009

In Breeding Populations

Morrell et al. 2012

Relevance to Crops

- The potential to purge deleterious mutations is related to population size
 - Many breeding programs have very small effective size
- Biggest diminution in fitness when deleterious mutations are homozygous
 - Barley, soybeans, and wheat...

Applications

- 'Reverse genomic selection' against deleterious mutation could improve yield
 - Deleterious changes in genes that aren't directly associated to traits
- Targeted recombination purge deleterious changes

Genomic Selection

Genome Level Analysis

Extended linkage disequilibrium in teosinte
Genetic provenance of climate adapted

mutations in barley

Inversion Evidence

- Decreased recombination rate in inversion region
- Low haplotype numbers for the SNPs inside inversion
- High Fst values for the SNPs inside inversion

Fang et al. (in review)

Inversion Frequency

Fang et al. (in review)

Association - Altitude

Fang et al. (in review)

Wild Barley Diversity Collection Sample Sizes - 196, 116

Average Fst BOPA I 0.09 BOPA2 0.13

Aridity - Western Asia

Fst - Chromosomal

Wild Barley - Chromosome 5 0.7 0.6 0.5 0.4 Fst 0.3 Adh3 0.2 0.1 C രം ్ం 0.0 Ó cM Distance

443 SNPs

Opportunities

• Genomics era has just begun

- Many patterns are easy to find
- SNP metadata 'data about data' is very important
 - Latent with information from places we can't visit!

Acknowledgements

• Funding

- USDA NIFA National Needs Fellowship
 - Soybean genetic load

USDA NIFA T-CAP

• Barley

United States Department of Agriculture

National Institute of Food and Agriculture

Maize Inversions

- Zhou Fang (UMN)
- Tanja Pyhäjärvi (UC Davis)

See: http://faculty.agronomy.cfans.umn.edu/pmorrell/

Gene Isolation

