Bottom – Up Approach to Increase Yield under Water-Deficit?

Essence of photo is not in the dots.

"Yield" of photo is holistic sensory response of viewer.

- Shapes
- Smells
- Tastes

"Bottom-Up" Limitations

- Pathway redundancies and physiological homeostasis for many traits
- Yield impact severely dampened at higher levels of complexity

Glyphosate and Bt transgenics not relevant example for improving abiotic environmental stress

- Success based on single chemicals alien to plants.
- Quite different to alter performance of entire pathways and interacting pathways.

Disconnects in Drought Research to Develop Improved Cultivars

- Drought survival is generally irrelevant.
- Osmotic adjustment not beneficial.
- Slow growth unacceptable
- Experimental difficulties: Inappropriate rooting media Rapid imposition of stress

Finally, Successes in Using "Top Down" Approach for Physiological Traits

- Heat Stress in cowpea seed set
- Water-use efficiency in wheat
- Water-deficit tolerance of N₂ fixation in soybean
- Photoperiod insensitivity in bahiagrass
- ➤ Maximum transpiration rate in soybean

Hypothesis to Conserve Water: Limited Hydraulic Conductance

Challenges for the "Top Down" Approach

- 1. Early assessment of trait benefit.
- 2. Ability to phenotype for trait.
- 3. Breeding for trait and improved yield.
- 4. Cultivar selection and marketing

1. Early assessment of trait benefit.

- Experiments to mimic anticipated genetic modification.
- Simulation studies to assess yield response across environments and seasons.

Simulations using Simple, Mechanistic Soybean Growth Model

- Growth function of RUE and radiation interception
- Transpiration function of growth and water use efficiency
- Growth and Development moderated by Fraction Transpirable Soil Water

GIS Data Base

(Pioneer Hi-Bred International, Inc.)

- 30 x 30 km grid system for U.S cropping areas (2655 grids for soybean)
- Weather (approx. 50 years for most grids)
- Soil
- Soybean Maturity Group
- Sowing Date

Each test required >130,000 model runs

Simulated Yield Response to Maximum Transpiration Rate

2. Ability to phenotype for trait

Miflin (2000): "Undue or sole emphasis on genomics will lead to an ever increasing gap between the genetic information acquired and an understanding of the phenotype, a 'phenotype gap' ".

Major Challenge: Develop physiological phenotyping tools.

Multi-level Physiological Phenotyping

- Crude phenotyping, but capability of examining many genotypes.
- •Intermediate level in sophistication and capability in genotype numbers.
- Refined physiological measurement.

Crude Phenotype: Initial-Visual Phenotype

Advanced Phenotyping: Measure Transpiration Rate

Intermediate Phenotyping: Exposure to Ag⁺ as Aquaporin Inhibitor

QTL for Ag⁺ Response

PI416937 x Benning

	Satt 339	Satt 462
Phenotypic variation	22.0	14.5
Chromosome	Gm03	Gm19
R2	6.7**	4.7*
LOD score	3.7	3.1

3. Breeding for water conservation (Goal)

- Parental Selection: Use all three levels of phenotyping
- During Genotype Selection: Phenotype by silver response (including marker)
- Confirmation of Superior Genotype:
 Measurement of VPD response

4. Cultivar selection and marketing

- Mean yield likely not sufficient for stress trait.
- Evidence of yield response across environments.

Maximum Transpiration Trait

Tolerant - Check (bu A⁻¹)

Information for Risk Assessment by Farmers

- Probability of yield gain by location/environment
- Anticipated amount of yield change

Challenges for the "Top Down" Approach

- 1. Early assessment of trait benefit.
- 2. Ability to phenotype for trait.
- 3. Breeding for trait and improved yield.
- 4. Cultivar selection and marketing