

Current Projects

- Isolation and characterization of a toxin that induces SDS in soybean - USB
- Development of a plant antibody against this toxin - NCSRP
- Identification of FvTox1-interacting soybean protein(s) - Syngenta
- Identify pathogenicity genes involved in SDS development - ISA

Phytotoxin, FvTox1 causes chlorophyll losses or chlorosis (as in foliar SDS) in leaf discs.

SDS-susceptible cultivar, Essex

-Hargeet Brar and Siva Swaminathan

Losses of chlorophyll in SDSsusceptible soybean lines.

Created anti-FvTox1 plant antibody gene and expressed in transformed roots.

Genomics approach for identification of additional pathogenecity factors

- Genome of the pathogen is being sequenced.
- Candidate pathogenicity or virulence genes are being identified.
- Candidate genes will be investigated for their possible roles in SDS development.

Genome sequence of the SDS pathogen, Fusarium virguliforme

Collaborators:

Iowa State University

- Madan K. Bhattacharyya
- Xiaoqiu Huang Southern Illinois University
- Ahmad Fakhoury
 University of Arkansas
- Burton Bluhm

Genome sequence of the SDS pathogen, Fusarium virguliforme

The project is funded jointly by:

- · Illinois Soybean Association
- Iowa Soybean Association
- North Central Soybean Research Program
- Soybean Research Development Council

Objectives of the sequencing project are:

- 1. Generate high quality Fusarium virguliformae genome sequence.
- 2. Sequence transcripts of the pathogen.
- 3. Annotate (name) the genes.
- 4. Construct a bacterial artificial chromosome library.
- 5. Sequence additional strains of the pathogen.

Fusarium virguliforme Mont 1 is being sequenced.

- Mont 1 isolates were generated from single conidia and virulence of the selected isolates were tested.
- One of the single conidia-derived isolates was selected for sequencing.

Sequencing the Fusarium virguliforme Mont-1 genome

- · Shotgun sequence of sheared DNA.
- Paired-end sequence of ~ 3 kb DNA fragments.
- ~1 giga bases sequence (20X genome equivalents) assembled into contiguous (contig) sequences.

454-sequence reads were ~360 bases.

Fusarium virguliforme geneome is composed of ~47 Mb DNA.

```
>400 kb 1
>300 kb 3
>200 kb 7
>100 kb 92

102 contigs = 15,395,638 bases
```

```
>50-99.99 kb 197
>10-49.99 kb 650
>5-9.99 kb 360
```

1,207 contigs = 31,478,950 bases

Total = 46,874,588 bases (~47 Mb)

Subodh Srivastava

Current Activities

To accomplish genome assembly

- Paired-end sequencing of 8 kb DNA fragments (SeqWright)
- Bacterial artificial chromosome-end sequencing (Lucigen)

To facilitate annotation

 Sequencing of the pathogen transcripts (ISU)

F. virguliforme contains 47 Mb DNA and 15,244 genes

```
Fusarium graminearum
35.3 Mb, 14,034 genes
Fusarium verticillioides
40.5 Mb, 14,195 genes
Fusarium oxysporum f. sp. lycopersici
59.5 Mb, 17,608 genes
```

Identification of Candidate Pathogenecity Genes

- We investigated F. virguliforme 15,244 genes for genes that show high similarities to known pathogenecity genes.
- We used the pathogenecity proteins included in pathogen-host interaction database (PHI database) for this study.

Pathogen-host interaction database (PHI database)

- There are 1,100 proteins in the PHI database.
- They are experimentally verified for pathogenicity, virulence and effector proteins
- They are from bacteria, fungi and Oomycete pathogens,
- that Infect plants, human, animals, insects, fishes and fungi.

http://www.phi-base.org/

A total of 217 candidate pathogenecity genes were detected.

Fv proteins with similarities to enzymes involved in toxin biosynthesis

Fv Protein	Protein ID	Enzyme	E Value	Organism
g13093	ABB90284	FAD/FMN-containing dehydrogenases	0	Fusarium graminearum
g11245	AAD43562	Fum1p	0	Gibberella monilif
g6149	AAX09988	nonribosomal peptide synthetases	0	Cochliobolus heterostrophus
g10139	ABK64180	O-methyltransferase	2.00E-042	Cercospora nicotianae
g1999	ABK64184	oxidoreductase	2.00E-053	Cercospora nicotianae
g8583	ABK64182	oxidoreductase	2.00E-036	Cercospora nicotianae
g10141	AAS57292	polyketide synthase	0	Fusarium graminearum
g13393	ABB90282	polyketide synthase	0	Fusarium graminea
g13398	ABB90283	polyketide synthase	0	Fusarium graminear
g13712	AAB08104	polyketide synthase	0	Cochliobolus heterostrophus
g3411	AAC39471	polyketide synthase	0	Aspergillus fumigatus
g8421	ABB90283	polyketide synthase	0	Fusarium graminear
g5613	AA068047	putative thiosulfate sulfurtransferase	6.00E-031	Salmonella enterica
g6775	ABK64183	reductase	5.00E-044	Cercospora nicotianae

Pathogenecity in *F. virguliforme*

Regulated by toxins (metabolites and peptides) synthesized by enzymes as well as necrosis and ethylene inducing peptide-1 (NEP1)-like proteins.

- 1. Nonribosomal peptides,
- 2. Non-proteinaceous, secondary metabolites such as polyketides.
- 3. NEP1-like proteins.

Acknowledgments

Hargeet Brar

Shan Li

Binod Sadhu

Dr. Siva Swaminathan

Dr. Ramesh Pudake

Dr. Subodh Srivastava

Collaborators

Dr. Xiaoqiu Huang, ISU

Dr. Ahmad Fakhoury, SIU

Dr. Burton Bluhm, UA

Dr. Gladys Mbofung, ISU

Dr. Leonor Leandro, ISU

Acknowledgments

Illinois Soybean Association
Iowa Soybean Association
North Central Soybean Research Program
United Soybean Board
Soybean Research Development Council

Thank you!